

ブリ①

資料4-1

ブリは我が国周辺と朝鮮半島東岸に分布し、全国の都道府県沿岸及び韓国にて漁獲されている。

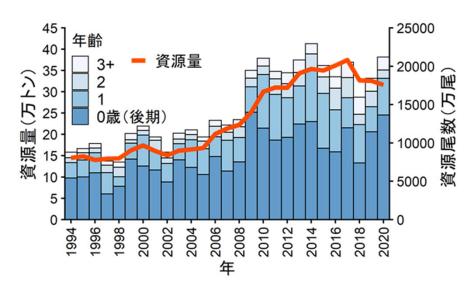
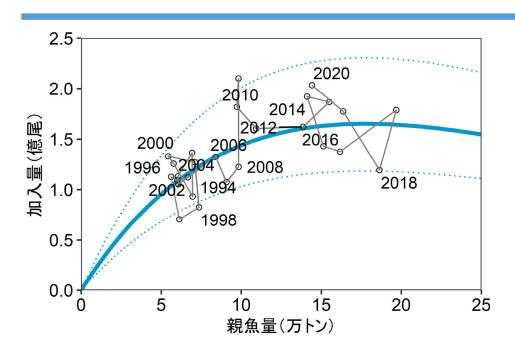


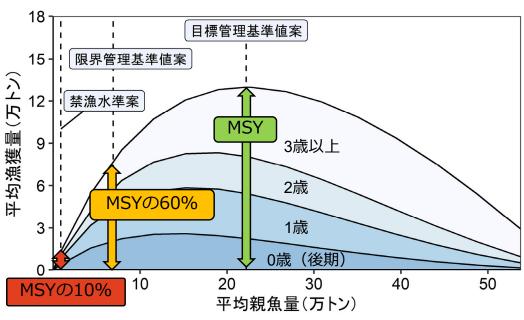
図1 分布域

東シナ海から北海道まで の我が国周辺域と朝鮮半 島東岸に分布する。産卵 は、東シナ海の陸棚縁辺 部から、太平洋側では伊 豆諸島以西、日本海側で は能登半島以西で行われ る。

図2 漁獲量の推移

1994~2009年は緩やかな増加傾向であったが、2010年以降急増し、2014年の13.6万トンを最高に、近年は12万トン前後が漁獲されている。2020年の漁獲量は11.8万トンであった。漁獲量には日本に加え、韓国の漁獲も含む。




図3 資源量と年齢別資源尾数

1994~2009年の資源量は14.0万~25.3万トンで、2010年以降は30万トンを超える資源量となっている。2020年の資源量は、31.6万トンであった。資源の年齢組成を尾数でみると、0歳(後期)と1歳を中心に構成されている。

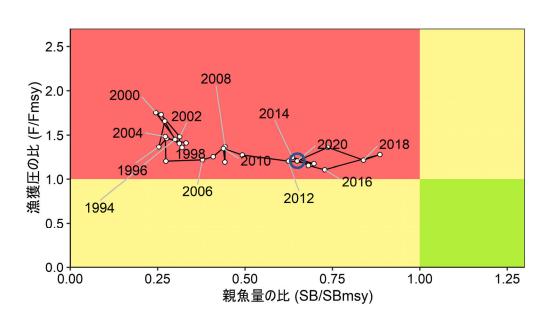
本資料における、管理基準値、禁漁水準、将来予測および漁獲管理規則については、資源管理方針に関する検討会(ステークホルダー会合)における検討材料として、研究機関会議において暫定的に提案されたものである。これらについては、ステークホルダー会合を経て最終化される。また、0歳魚は0歳(モジャコ期)と0歳(後期)を同一年内の半年コホートとして解析を行った。そのため、年ごとの資源量と資源尾数を計算する場合は、0歳魚のダブルカウントを避けるため、0歳(モジャコ期)を含めなかった。

ブリ②

図4 再生産関係

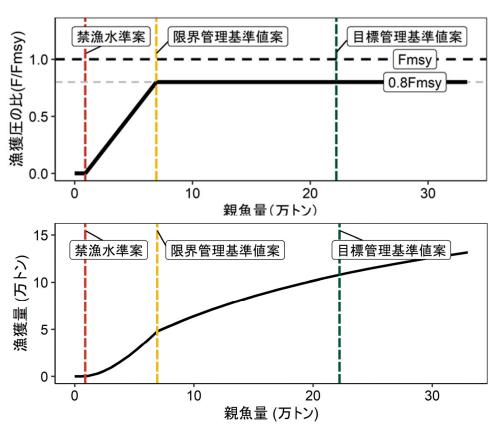
1994~2020年の親魚量と加入量に対し、リッカー型再生産関係(青太線:中央値、青点線:90%予測区間)を適用した。

図5 管理基準値案と禁漁水準案


最大持続生産量(MSY)を実現する親魚量(SBmsy)は22.2万トンと算定される。目標管理基準値としてはSBmsyを、限界管理基準値としてはMSYの60%の漁獲量が得られる親魚量を、禁漁水準としてはMSYの10%の漁獲量が得られる親魚量を提案する。

目標管理基準値案	限界管理基準値案	禁漁水準案	2020年の親魚量	MSY		
22.2万トン	6.9万トン	0.9万トン	14.4万トン	13.0万トン		

本資料における、管理基準値、禁漁水準、将来予測および漁獲管理規則については、資源管理方針に関する検討会(ステークホルダー会合)における検討材料として、研究機関会議において暫定的に提案されたものである。これらについては、ステークホルダー会合を経て最終化される。

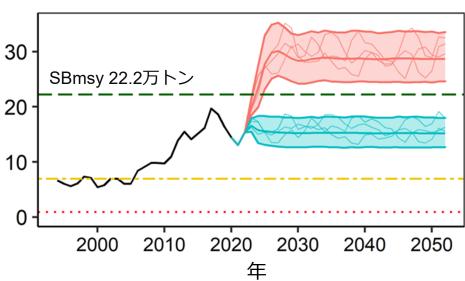

*原則として諸数値は有効数字3桁で記述しています

ブリ③

図6 神戸プロット(神戸チャート)

漁獲圧(F)は、資源評価開始年の1994年以降、直近 も含めて、最大持続生産量(MSY)を実現する漁獲圧 (Fmsy)を上回っていた。親魚量も1994年以降、最 大持続生産量を実現する親魚量(SBmsy)を下回っ ていた。

図7 漁獲管理規則案


(上図:縦軸は漁獲圧、下図:縦軸は漁獲量)

Fmsyに乗じる調整係数であるβを0.8とした場合の 漁獲管理規則案を黒い太線で示す。下図の漁獲量 については、平均的な年齢組成の場合の漁獲量を 示した。

本資料における、管理基準値、禁漁水準、将来予測および漁獲管理規則については、資源管理方針に関する検討会(ステークホルダー会合)における検討材料として、研究機関会議において暫定的に提案されたものである。これらについては、ステークホルダー会合を経て最終化される。

ブリ④

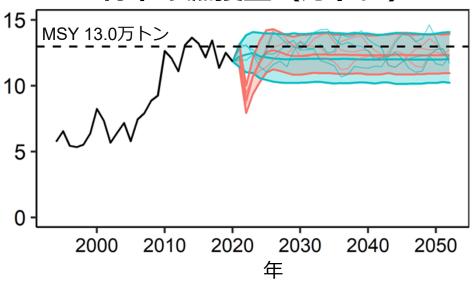

将来の親魚量(万トン)

図8 漁獲管理規則案の下での親魚量と漁獲量の将 来予測(現状の漁獲圧は参考)

βを0.8とした場合の漁獲管理規則案に基づくと、 平均親魚量は目標管理基準値案を上回って推移する 一方、平均漁獲量はMSY水準よりやや少ない値で 推移していくと予測される。

将来の漁獲量(万トン)

漁獲管理規則案に基づく将来予測 (β=0.8の場合)

現状の漁獲圧に基づく将来予測

実線は予測結果の平均値を、網掛けは予測結果 (2000回のシミュレーションを試行)の90% が含まれる範囲を示す。

---- MSY

-----目標管理基準値案

······ 禁漁水準案

本資料における、管理基準値、禁漁水準、将来予測および漁獲管理規則については、資源管理方針に関する検討会(ステークホルダー会合)における検討材料として、研究機関会議において暫定的に提案されたものである。これらについては、ステークホルダー会合を経て最終化される。

ブリ⑤

表1. 将来の平均親魚量(万トン)

2032年に親魚量が目標管理基準値案	(22.2万トン)	を上回る確率
--------------------	-----------	--------

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
1.0	14.4	13.1	15.4	18.2	19.5	21.2	22.0	22.3	22.3	22.3	22.2	22.2	22.3	48%
0.9	14.4	13.1	15.4	19.0	21.4	24.2	25.6	26.0	25.8	25.5	25.3	25.3	25.5	92%
0.8	14.4	13.1	15.4	19.9	23.5	27.7	29.8	30.1	29.5	28.8	28.4	28.4	28.7	100%
0.7	14.4	13.1	15.4	20.7	25.8	31.8	34.6	34.7	33.3	31.8	31.2	31.4	31.9	100%

表2. 将来の平均漁獲量(万トン)

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
1.0	11.8	12.2	10.6	11.8	12.3	12.7	12.9	12.9	12.9	12.9	12.9	12.9	13.0
0.9	11.8	12.2	9.8	11.3	12.1	12.7	12.9	12.9	12.8	12.8	12.8	12.8	12.8
0.8	11.8	12.2	8.9	10.7	11.8	12.6	12.7	12.6	12.3	12.2	12.3	12.3	12.4
0.7	11.8	12.2	8.0	10.0	11.3	12.2	12.2	11.9	11.6	11.4	11.5	11.6	11.7

漁獲管理規則案に基づく将来予測において、 β を $0.7\sim1.0$ の範囲で変更した場合の平均親魚量と平均漁獲量の推移を示す。2021年の漁獲量は、予測される資源量と2020年の漁獲圧により仮定し、2022年から漁獲管理規則案に基づく漁獲を開始する。 β を 0.8とした場合、2022年の平均漁獲量は 8.9万トン、2032年に親魚量が目標管理基準値案を上回る確率は 100%と予測される。

本資料における、管理基準値、禁漁水準、将来予測および漁獲管理規則については、資源管理方針に関する検討会(ステークホルダー会合)における検討材料として、研究機関会議において暫定的に提案されたものである。これらについては、ステークホルダー会合を経て最終化される。

^{*}原則として諸数値は有効数字3桁で記述しています