水産基盤施設の維持管理点検マニュアル

参考資料

A. 定期点検間隔の評価検討資料 .. 参-1
B. 点検に活用できる調査技術の事例 参-3
 B.1 UAV ... 参-3
 B.2 表面 P 波法による簡易機能（老朽化）診断手法 参-6
 B.3 機械インピーダンスによる簡易圧縮強度の計測 参-8
 B.4 リバウンドハンマ ... 参-10
 B.5 ナローマルチ測深機 ... 参-11
 B.6 ROV ... 参-13
 B.7 水中ドローン ... 参-15
 B.8 水中 3D スキャナ ... 参-16
 B.9 垂下式カメラ .. 参-18
 B.10 地中探査技術 .. 参-19
 B.11 センサによるモニタリング 参-21
 B.12 3D レーザースキャナ ... 参-23
 B.13 赤外線を用いた浮き・剥離の画像解析 参-24
 B.14 デジタルカメラによる画像解析 参-26
C. 漁港施設に見られる主な損傷写真の事例 参-28
D. 調査結果の記録に活用できる技術の事例 参-57
 D.1 維持管理情報プラットフォーム 参-57
 D.2 漁港施設の点検システム 参-59
E. 日常点検記入シート及び記載例 参-61
A. 定期点検間隔の評価検討資料

（1）老朽化の検討手法

対象施設の健全度がD→C→B→Aへと進行する状況については定期点検で確認することになる。ここで、その施設に求められる機能を確保するためには、「健全度A（要求性能を下回る可能性がある状態）」になる前変化を見逃さないことが重要となる。「健全度B（予防的対策を施さないと将来要求性能を下回る恐れがある状態）」は予防保全対策を計画的に検討する段階であるため、本検討では「健全度Cから健全度Aへの変化を見逃さないこと（健全度Bで推移する期間）」に着目することとした。

検討手法としては、全国漁港での初回の定期点検に関する機能保全計画データベースをもとに、施設全体の健全度（A～D）の老朽化予測曲線により健全度の進行状況を整理・分析した。

（2）収集資料

機能保全計画データベースには全国39都道府県の1,860漁港で実施された初回の機能保全計画に関する情報が網羅されており、検討に必要な下記のデータがある。

（施設名、建設年、構造種別、施設全体の健全度、計画書策定年等）

漁港施設を主な構造型式ごとに集計するにあたり、検討に必要なデータが欠落または不明確な施設を除外した。その結果、18,171施設を検討対象とした。

漁港施設の構造型式別の健全度の割合を表-A.1に示す。

表-A.1 漁港施設の構造型式別の健全度の割合

<table>
<thead>
<tr>
<th>健全度</th>
<th>防波堤</th>
<th>護岸</th>
<th>係留施設</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>重力式</td>
<td>⽔板式、鋼製</td>
<td>重力式</td>
<td>⽔板式、鋼製</td>
</tr>
<tr>
<td>A</td>
<td>594</td>
<td>150</td>
<td>23%</td>
<td>113</td>
</tr>
<tr>
<td>B</td>
<td>1,887</td>
<td>166</td>
<td>26%</td>
<td>44</td>
</tr>
<tr>
<td>C</td>
<td>3,384</td>
<td>274</td>
<td>42%</td>
<td>201</td>
</tr>
<tr>
<td>D</td>
<td>1,051</td>
<td>60</td>
<td>9%</td>
<td>120</td>
</tr>
<tr>
<td>合計</td>
<td>6,916</td>
<td>650</td>
<td>100%</td>
<td>380</td>
</tr>
</tbody>
</table>

総数 18,171
(3) 検討結果

健全度 B 評価で進行する期間についての検討結果を表-A.2 に示す。その結果、健全度 B で推移する期間は、11.1〜17.7 年（平均 14 年）であった。

この結果から点検間隔の標準期間を 10 年と設定しても施設の安全性に支障が出る老朽化を見逃す可能性は小さいと考えられる。よって、定期点検の標準的な間隔としては「10 年」とする。

表-A.2 健全度 B 評価で進行する期間についての検討結果一覧表

<table>
<thead>
<tr>
<th>施設／主要な構造型式</th>
<th>手法</th>
<th>進行期間</th>
<th>劣化予測線</th>
<th>健全度B</th>
<th>健全度B.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>防波堤</td>
<td>重力式防波堤</td>
<td>22.3</td>
<td>15.2</td>
<td>44.7</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>矢板式、杭式防波堤</td>
<td>15.9</td>
<td>11.4</td>
<td>31.9</td>
<td>22.9</td>
</tr>
<tr>
<td>護岸</td>
<td>重力式護岸</td>
<td>27.4</td>
<td>16.7</td>
<td>54.7</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>矢板式護岸</td>
<td>17.2</td>
<td>12.2</td>
<td>34.4</td>
<td>24.3</td>
</tr>
<tr>
<td>係留施設</td>
<td>重力式係船岸、PC・RC製浮体式係船岸</td>
<td>19.2</td>
<td>13.4</td>
<td>38.3</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>矢板式・桟橋式係船岸、鋼製浮体式係船岸</td>
<td>15.0</td>
<td>11.1</td>
<td>30.0</td>
<td>22.1</td>
</tr>
<tr>
<td>船揚場</td>
<td></td>
<td>26.3</td>
<td>17.7</td>
<td>52.6</td>
<td>35.4</td>
</tr>
</tbody>
</table>
B．点検に活用できる調査技術の事例
B.1 UAV

【活用の利点】
・UAV の利用により、短時間で広域に渡る写真撮影が可能となる。また、カメラの画角や
解像度、UAV の飛行高度の設定により、俯瞰撮影から詳細な視認までを行うことができ
る。特に人の立入が困難な消波工や天端幅の狭い護岸、胸壁、陸から隔てられた沖防波
堤、水中の消波ブロックの配置状況等における点検を安全かつ効率的に行うことができ
る。
・漁港施設の点検は調査員によって行われているが、転倒・落水の危険を伴う点検箇所、
ゴミや植生に加え雨や雪等による変状の見落とし、調査員による老朽化度判定のバラつき
等を軽減することができる。

【技術内容】
・一般的な UAV の仕様は下記の通り。

<table>
<thead>
<tr>
<th>名称</th>
<th>機種 A</th>
<th>機種 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>外観</td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量(g)</td>
<td>3,400</td>
<td>1,380</td>
</tr>
<tr>
<td>体格寸法(mm)</td>
<td>559</td>
<td>350</td>
</tr>
<tr>
<td>最大速度(m/s)</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>最大飛行時間(min)</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>最大解像度</td>
<td>4,608×3,456</td>
<td>4,000×3,000</td>
</tr>
</tbody>
</table>

出典：無人航空機(UAV)を活用した水産基盤施設の点検の手引き、平成31年3月、p11

【利用する際の留意事項】
・判定 c の判断に必要なひび割れ幅の要求精度は施設、調査項目によって異なり、分解能
の関係から幅 10mm のクラックに対しては高度 20m、幅 3mm のクラックに対しては機種によ
っては高度 5m 以下での撮影が必要となる。
・撮影した複数の画像はオーバーラップさせ、マッチングしやすいように人工構造物の撮
影を含むよう配慮する。
・現行航空法では、人または物件（第三者の建物、自動車など）との間に 30m 以上の距離
を保って飛行させなければならない。これによらず飛行させる場合には地方航空局の許
可・承認が必要である。

参-3
【操作手順】
・空撮の活用では、外郭施設・係留施設が主な対象施設となる。
・対象とする変状は、施設全体の移動、上部工・本体工におけるひび割れ・欠損、消波工の沈下等である。
・クラック抽出能力の精度を予め、キャリブレーションにより把握しておく必要がある。
予め計測したクラックとクラックスケールを空撮して行う。
・飛行高度を低くすることは、点検の精度が高くなる反面、点検の効率性が低下する。そのため、10m以上の飛行高度で施設全体の変状の有無を確認し、変状があると判断される

UAV（名称：DJI Inspire1 V2.0）

UAVによる調査状況

カメラキャリブレーションの実施状況（飛行高度10m、クラック幅2mmを視認）
出典：無人航空機（UAV）を活用した水産基盤施設の点検の手引き、平成31年3月、p17,27
箇所において 5m 程度の低空飛行による撮影、もしくは人員の踏査による写真撮影を行う等が現実的な対応方法となる。

・スパン毎に撮影した写真を既往施設平面図と重ね合わせ、各施設におけるクラック・欠損の抽出を行う。
・空撮による防波堤の点検事例を下図に示す。

UAV 撮影画像解析
出典：無人航空機(UAV)を活用した水産基盤施設の点検の手引き、平成 31年 3月、p21

【参考資料】
・無人航空機（UAV）を活用した水産基盤施設の点検の手引き、平成 31年 3月、水産庁漁港漁場整備部整備課

【機種価格】
・機種 : PHANTOM4 PRO V2.0
・メーカー : DJI
・価格 : 20 万円程度
B.2 表面 P 波法による簡易機能（老朽化）診断手法

【技術の利点】
・ハンマーとセンサーを用いるのみで、コンクリート構造物の状態（圧縮強度、ひび割れ深さ、内部空隙）を把握できる。

【技術内容】
・表面 P 波法は衝撃弾性波法の一つで、ハンマーの打撃によってコンクリート表面に弾性波を発生させ、コンクリート表面に設置したセンサーにより、その弾性波を受信する手法である。
・この弾性波の速度が規定値以下になることで、圧縮強度の低下、ひび割れの進展、空洞の発生が疑われることになる。

衝撃弾性波法（表面 P 波法）による計測
出典：漁港施設における表面 P 波法による簡易機能（老朽化）診断手法適用マニュアル（案）、
平成 28 年 4 月、p4

【利用する際の留意点】
・ハンマーで衝撃を与える箇所とセンサーの設置箇所の距離は、0.2m 以上 9m 以内とする。
・測定はコンクリート構造物の同一平面内において行うものとする。
・潮位によって海面下となる場所は避け、コンクリート表面が乾いていることを確認する。
・打撃点と受信点は、可能な限り、ひび割れ、表面劣化、剥離などの老朽化、変状から離れれた平らな場所を選定する。また、付着物のある場所、粗骨材の露出が著しい場所は避けて選定する。
・実施箇所近傍に鉄筋がある場合、測定における測線は、鉄筋に近接する平行な測線を避け、測線と鉄筋がなす角度を 45 度となるようにする。
【作業手順】
・研磨剤やグラインダー等でコンクリート表面を削って位置出しをする。
・入力点と受信点の間隔を測定し記録する。
・測定機器による計測を実施する。入力点、受信点で弾性波（表面 P 波）の立ち上がりが捉えられている場合、5 回計測して保存する。
・測定器付属の分析用ソフト、あるいは PC へデータを移した後、データ処理を行う。
・コンクリートの設計基準強度に対する表面 P 波速度が基準値を下回る場合、コンクリート構造物の状態（圧縮強度、ひび割れ深さ、内部空隙）に問題のある可能性があることがわかる。

【参考資料】
・漁港施設における表面 P 波法による簡易機能（老朽化）診断手法適用マニュアル（案）、平成 28 年 4 月、国立研究開発法人水産研究・教育機構水産工学研究所
B.3 機械インピーダンスによる簡易圧縮強度の計測

【技術の利点】
・コンクリートの圧縮強度を比較的簡便で迅速に測定ができ、多点での連続計測や一定の精度が確保できる。
・施設本体からコアを採取する必要がなく、試験コストや作業時間の面で有利である。
・簡易なリバウンドハンマーによる反発度法も一般的に用いられているが、精度が低く、適用範囲が限定される等の課題がある。

【技術内容】
・コンクリートの圧縮強度は、構造体の耐久性に関する指標として重要である。
・ハンマーでコンクリートを打撃したときのハンマーがコンクリート表面を押している時間と、コンクリートの弾性変形によりハンマーが押し戻される時間の打撃応答波形から機械インピーダンス値を算出する方法である。この値を測定・解析することで、コンクリートの圧縮強度の推定、コンクリート構造物における表面の劣化度合いおよび表面近傍の浮き・剥離を測定するものである。

出典: 港湾施設における機械インピーダンス法を用いたコンクリート強度推定運用マニュアル（案）、平成28年4月、p3

【利用する際の留意点】
・ハンマー打撃によって得られる各指標値はコンクリートの表層50mm程度の情報であり、これより深いコンクリート内部の調査には適用できない。
・平らな場所を選定し、カキや藻類等の付着物がある場所、粗骨材の露出が著しい場所は可能な限り避ける。
【作業手順】
・5cm×5cm メッシュをチョーキング等して、測定位置出しをする。
・表面を研磨材やグラインダー等で削って測定を実施する。
・25 点のメッシュの中を、垂直に打撃する。
・データ取得は測定機器付属のソフトによって行い、SD カードを抜き出し PC の EXCEL 上で処理をする。

【参考資料】
・漁港施設における機械インピーダンス法を用いたコンクリート強度推定運用マニュアル (案)、平成 28 年 4 月、国立研究開発法人推算研究・教育機構水産工学研究所

【関連技術の NETIS 登録】
●技術名称：コンクリートテスター（CTS-02）
登録 NO．：HK-060013-V
（注）2017 年掲載終了

【従来技術とのコスト比較】
・従来技術：リバウンドハンマ
・作業量による比較は下表の通り。
・CTS はコンクリート表面の研磨の必要性がないため、測定時間は 54%短縮。データは PC で一括処理を行うため、84%短縮
・金額ベースでは、1 日当たりの作業量でコスト算出すると、CTS は 59.4%のコストカット。

<table>
<thead>
<tr>
<th></th>
<th>リバウンドハンマ</th>
<th>CTS</th>
<th>短縮率</th>
</tr>
</thead>
<tbody>
<tr>
<td>測定点数</td>
<td>1,500点/日</td>
<td>3,250点/日</td>
<td>54%</td>
</tr>
<tr>
<td>データ整理時間</td>
<td>1,000点/日</td>
<td>6,375点/日</td>
<td>84%</td>
</tr>
</tbody>
</table>

出典：日東建設株式会社 HP
B.4 リバウンドハンマ

【技術の利点】
コンクリート表面をリバウンドハンマーによって打撃し、その反発度から圧縮強度を推定する方法を反発度法という。反発度法はコア採取に比べると構造物を破壊することなく簡易に測定ができるため
・詳細調査を実施する前の予備調査
・コア採取が困難な場合
・多くの箇所の強度推定が必要な場合
・コンクリート材齢に伴う強度増進を確認したい場合

等に用いられる。

シュミットハンマ

【技術内容】
出典：株式会社アクトファクトリーHP
リバウンドハンマーにより一定のエネルギーでコンクリート表面を打撃したときに、リバウンドハンマー内のインパクトプランジャの跳ね返り高さ（反発度）とコンクリートの硬さ（ブルネル硬度）およびコンクリートの強度には相関がある。そのため、反発度からコンクリートの強度を推定することができる。

【利用する際の留意点】
・反発度から圧縮強度を求める換算式は、事前に反発度と圧縮強度の関係を実験的に求める方法が望ましい。事前にコアを採取し圧縮強度を測定するのが困難な場合は、各団体より提案されている換算式を用いて圧縮強度を推定することもできる。
・精度的には、機械インピーダンスによる簡易圧縮強度の計測より落ちる。

【作業手順】
・表面が平坦で縁部から50mm以上離れた位置を選ぶ。
・ただし、部材厚さが100mm以下の場所、部材幅が150mm以下の箇所、浮きやひび割れ・剥離がある場所は選定しない。
・表面の凹凸、塗膜、付着物がある場合は取り除く。
・1箇所の測定では互いに25〜50mmの間隔を持った9点について測定する。偏差が平均の20%以上の値は採用しない。
・打撃は測定器を測定面に対して垂直に配置し、ゆっくり壁面に押し当てて測定する。
・必要に応じて、「コンクリート材齢」「コンクリート表面の湿潤状態」「コンクリートの応力状態」「コンクリート表面の中性化」による補正を行う。

【参考資料】
B.5 ナローマルチ測深機

【活用の利点】
・マルチビームの活用により、短時間で広域にわたる三次元データが取得可能となる。面的（二次元）・空間的（三次元）データの定量性の高いデータを補完的に記録・保存（積）することで、より客観的に老朽化の進展状況を把握することが可能となる。
・音波を利用していることから水中の濁りや暗部の影響がなく、潜水作業を伴わない海上作業によることで安全かつ効率的な点検が可能となる。

【技術内容】
・マルチビーム測深機は、最大で 256 本の音響ビームを扇状に発受信し、水中部の地形等を三次元データとして取得する装置である。測深範囲はリアルタイムに船上のパソコン画面に表示されるため、データの取得状況を確認しながら調査できる。
・漁港施設の機能診断のうち、潜水目視調査に係る老朽化度の評価基準の判定に用いる技術であり、対象施設は重力式、矢板式または杭式の防波堤、護岸、係船岸および水域施設である。
【利用する際の留意点】
・評価基準の判定すべてに対応可能ではなく、現場条件（調査対象の水深、面積等）によっ
ても得られる効果が異なるため、それらを考慮して適用を検討する必要がある。
・マルチビームの機器分解能からコンクリートのひび割れや鋼矢板の数 cm 程度の間孔は判
別困難である。また、水面際（水面～2m）についても適用困難である。
・費用面においては、点検面積が 10,000 ㎡未満の場合、マルチビームより従来の潜水作業
の方が安価となるため留意が必要である。以下に点検面積 10,000 ㎡の一例を示す。

例）防波堤：延長 500m × 水深 10m × 2 面（港内側 + 港外側）

【操作手順】
計測前（転装、準備）
・使用船舶へ機器の取り付け等（転装）を行い、GNSS テスト、喫水確認、パッチテスト、
温速度計測を行う。
計測中
・水深の約 2 倍を目安に測線間隔を設定し計測する。
・船速は 2～3 ノットを目安に、できるだけ低速度で計測する。
・計測回数は 1 回を基本とするが、現場状況に応じ複数回計測することで点群密度を大きく
くし変状の詳細を把握することが望ましい。
計測後（データ処理、解析）
・取得データを抽出し、ノイズ除去処理を行う。
・点群データを回転させ、さまざまな方向から俯瞰することで変状箇所の抽出を行う。

【関連技術の NETIS 登録】
●技術名称：マルチビームソナーシステム（水域の迅速な面的測深技術）
登録 NO. ：CBK-130005-VE
B.6 ROV

【活用の利点】
・海底地盤の洗堀、水中の消波ブロックや根固ブロックの散乱など、ROV により局部的な変状を含め潜水作業を伴わずに把握することが可能となる。
・桟橋上部工の下面は水面との距離が小さく潮待ちによる調査が強いられるが、ROV の利用により調査員または潜水士が直接目視調査をすることなく、遠隔で調査を実施することが可能となる。（次頁参照）

【技術内容】
・水深 50m の静水域仕様から水深 2,000m 仕様まで幅広い機種がある。ハイビジョンカメラ、LED 照明、深度センサーや距離センサーなどの装備品を軽量フレーム構造に納め、三軸スラスタを搭載しスムーズな動作が可能である。
・港湾調査で実績のある水深 100m 対応の ROV の仕様を右図に示す。

【利用する際の留意点】
ROV の欠点としては、キャリブレーションが必要なことが挙げられ、さらに操作には相当な熟練が必要であり、流れの強い領域（2knot 以上）では操作が不能となる。

【操作手順】
・作業船は、調査対象区域上またはその潮下側に係留する。
・調査時の潮流には常に留意し、作業船の位置がずれた場合には、補正もしくは再度投錨するなどして、作業船の位置を調整する。
・船上から ROV を垂下し、カメラのモニター映像を見て、調査対象構造物を調査する。
・撮影後、ROV を浮上させ回収する。

【関連技術の NETIS 登録】
●技術名称：水中点検ロボット（アクジャスター搭載型 ROV）（水中での姿勢制御が可能となったロボット「ディアグ」）
登録 NO. ：KTK-150011-VR

出典：広和株式会社 HP
出典：国土交通省総合政策局 HP
コスト比較:
・条件：港湾構造物を水中から点検を行う。
・従来技術－潜水士による水中構造物の点検・・・・・・389,413 円、2.5 日
・新技術・・・・・・337,862 円、2 日

特殊用途として、桟橋上部工の下面の調査に使われる ROV を以下に示す。進入波による動揺で、陸上のモニターでの確認が容易ではなく、静穏な時間帯に限定される。

【桟橋上部工下面の点検診断ロボット（ROV）】
特徴：①GPS 利用不可の桟橋下でも測位可能
②陸上から作業中の位置を把握可能
③狭い空間や夜間でも点検作業可能
④撮影画像には位置情報を付帯し、汎用ソフトにて 3D 化が可能。

寸法：L1210×W800×H925（突起部を除く）
重量：約100kg

出典：港湾構造物のライフサイクルマネジメントの高度化のための点検診断および性能評価に関する技術開発 http://www.jisf.or.jp/info/event/dobokushinpo/documents/3_dobokushinpo23.pdf
B.7 水中ドローン

【技術の利点】
・小型 ROV の位置づけであり、低価格で購入が可能である。
・安価な ROV で、ホビー用途としての購入者が多いようであるが、調査用としても利用始めている。

【技術内容】
・前後左右上下の動きが可能である。
・100m 程度の有線で作動する。
・一例の水中ドローンの仕様を示す。

PowerRay の仕様

<table>
<thead>
<tr>
<th>サイズ</th>
<th>465×270×126mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>重さ</td>
<td>3.8kg(気中)</td>
</tr>
<tr>
<td>動作環境温度</td>
<td>0～40℃</td>
</tr>
<tr>
<td>最大深度</td>
<td>30m</td>
</tr>
<tr>
<td>最大進速度</td>
<td>1.5m/s(静水中)</td>
</tr>
<tr>
<td>最長動作時間(静水中)</td>
<td>4h(低速)、1.5h(中速)、0.5h(高速)</td>
</tr>
<tr>
<td>充電時間</td>
<td>2.5h</td>
</tr>
<tr>
<td>スクリュー</td>
<td>3個(水平2機、垂直1機)</td>
</tr>
</tbody>
</table>

出典：PowerVision 社 HP

【利用する際の留意点】
・耐圧性能とそれに比例する推進力が海洋向けではなく、湖沼等の目的が限定され、搭載カメラの解像度も他の ROV と比較すると見劣りするものである。
・現時点では、水中ドローンには利用場所の制限や申請手続きなど、規制はほとんど存在しない。

【操作手順】
・スマートフォンやタブレットに専用アプリをダウンロードすれば、簡単に水中の撮影が始めるられる。

【機種価格】
・機種：パワーレイ
・メーカー：POWER VISION
・価格：20万円程度
B.8 水中3Dスキャナ
【活用の利点】
・水中3Dスキャナの活用により、短時間で広域にわたる三次元データが取得可能となる。面的（二次元）・空間的（三次元）データの定量化の高いデータを補完的に記録・保存（蓄積）することで、より客観的に老朽化の進展状況を把握することが可能となる。
・音波を利用していることから水中の濁りや暗部の影響がなく、潜水作業を伴わない海上作業によることで安全かつ効率的な点検が可能となる。

【技術内容】
・マルチビーム同様、漁港施設の機能診断のうち、潜水平地調査に係る老朽化度の評価基準の判定に用いる技術であり、対象施設は重力式、矢板式または杭式の防波堤、護岸、係船桟および水域施設である。
・計測方法はマルチビーム同様船舶に艤装する移動式に加え、三脚に据える固定式がある。
・マルチビームより周波数が高く、ソナーヘッドが上下左右に360度回転できる。
・マルチビームより広域な計測はできないが、詳細な点群データの取得ができるため鮮明な画像により変状把握が容易となるうえ、船上艤装型計測機器では取得が困難な水中構造物の側面水際部や隅角部、桟橋下部、閉所等の場所での計測が可能である。

被覆工の移動、散乱の計測データ（左：水中3Dスキャナ、右：マルチビーム）

水面際の計測データ（左：水中3Dスキャナ、右：マルチビーム）
【利用する際の留意点】
・評価基準の判定すべてに対応可能ではなく、現場条件（調査対象の水深、面積等）によっても得られる効果が異なるため、それらを考慮して適用を検討する必要がある。
・水中 3D スキャナの機器分解能からコンクリートのひび割れや鋼矢板の数 cm 程度の開孔は判別困難である。
・計測可能水深はマルチビーム約 400m に対し水中 3D スキャナ約 15m と浅い。

【操作手順】
計測前（艤装、準備）
・移動式は使用船舶へ機器の取り付け等（艤装）を行い、GNSS テスト、喫水確認、パッチテスト、温速度計測を行う。固定式は三脚へ機器の取り付け等を行い、三脚に固定したロープで対象箇所へ降下させ固定する。
計測中（移動式）
・水深の約 2 倍を目安に測線間隔を設定し計測する。
・船速は 2〜3 ノットを目安に、できるだけ低速度で計測する。
・計測回数は 1 回を基本とするが、現場状況に応じ複数回計測することで点群密度を大きくし変容の詳細を把握することが望ましい。
計測中（固定式）
・ソナーを回転させ対象方向に向けて計測する。
計測後（データ処理、解析）
・取得データを抽出し、ノイズ除去処理を行う。
・点群データを回転させ、さまざまな方向から俯瞰することで変状箇所の抽出を行う。

【関連技術の NETIS 登録】
●技術名称：水中 3D スキャナによる水中構造物の形状把握システム「i-UVS (Intelligent-Underwater Visualization System)」（音響機器による水中構造物、底面形状等の計測及び高密度 3D 点群モデルを作成する技術）
登録 NO. ： KT-180031-A
B.9 垂下式カメラ
【技術の利点】
・被覆消波ブロックと堤体の間隙に垂下することで、堤体壁面の状況を確認できる。
・多種多様であるが、高画質かつ小型・安価な機種として、例えば GoPro が挙げられる。

【技術内容】
・小型デジタルカメラにオプションである耐圧防水ハウジングを装着することによって水中撮影が可能となるカメラである。
・カメラ本体サイズは、59×40.5mm、重さ73～88 gのコンパクトボディである。

【操作手順】
操作方法のイメージと目地欠損の撮影例を下記に示す。

【機種価格】
・機種：HERO 8
・メーカー：GoPro
・価格：5万円程度
B.10 地中探査技術
【技術の利点】
下記の調査技術として、実用化が進んでいる。
・路面下の空洞の検出
・鉄筋位置の確認

【技術内容】
・電波を地面や構造物に放射面を向けて発射し、内部からの反射波を計測（周波数ごとの
時間、強度、波形）することで、埋設物の検知や内部構造物を計測する手法である。
・レーダー装置を移動させながら計測することで、送受信アンテナと目標物との相対距離
が変わるので、レーダー波形に目標物の形状を捉えることができる。
・地中レーダー機器としては、カートタイプ、ハンディタイプ、車載・牽引タイプがあ
り、漁港施設のエプロン下の空洞調査ではカートタイプが、鉄筋探査用としてはハンディ
タイプが使用される。

地中レーダー機器（カートタイプ）

地中レーダー装置の原理図

形状：17.5H×15.4W×23.2L
重量：1.5kg

出典：地中レーダー技術に関する調査検討会報告書、平成29年3月、p4、p6、p69
【利用する際の留意点】
・入射波と反射波の時間差を求めて地中での電磁波の伝播速度から探査場所の深さを求め るため、土の比誘電率の設定が重要である。

【作業手順】
係船岸エプロンでの空洞調査を例に示す。
・現地調査及び図面調査により、地中レーダーの測線計画の立案と測線上に存在する埋設 物の位置確認を行う。
・地中レーダーで概略探査を行う測線をエプロン上にマーキングする。
・一次調査として、地中レーダーで法線方向の探査を実施する。測線間隔を1.0m とし、全面を調査し、空洞の可能性のある箇所を決定する。
・空洞の可能性のある箇所について、間隔を細かくメッシュ状に測線を取り、二次調査 （詳細調査）を実施する。空洞の広がりや位置を特定する。

【参考資料】
・地中レーダー技術に関する調査検討会報告書、平成 29 年 3 月、地中レーダー技術に関 する調査会

【関連技術の NETIS 登録】
●技術名称 : コンクリート構造物内の埋設物非破壊探査装置（埋設物の位置検出性能改善 により、コンクリート構造物の埋設物探査を容易にした非破壊探査装置）
登録 NO. : KT-150040-VE
●技術名称 : 護岸背面・空洞可視化システム（高精度 GPR による表面に凹凸があるコンク リート護岸背面の空洞化領域可視化法）
登録 NO. : TH-140018-VR
B.11 センサによるモニタリング

【技術の利点】
構造物の劣化・損傷を予防・抑制するためには、現状の構造物の状態を把握、確認することが大事になる。そのためには定期的な点検やモニタリングが必要となるが、点検目視の困難な箇所での点検に有効となるのがセンサによるモニタリングである。

【技術内容】
活用されているモニタリング技術に次のような事例がある。

①桟橋上部工の腐食モニタリング
建設後25年が経過した鋼管杭式桟橋の健全な梁の鉄筋近傍に、ドリル削孔してセンサーを埋込み、7年間のモニタリングを実施している。5年後に自然電位が基準値を外れる変化を示し、目視調査の結果、錆汁の滲出が認められ有効性が確認されている。

【参考資料】
・桟橋上部工コンクリートにおける鉄筋腐食モニタリング実証実験、平成22年9月、土木学会第65回年次学術講演会
・例えば、岡崎慎一郎ほか、埋設型センサによる桟橋上部工RC部材の鉄筋腐食モニタリングに関する研究、港湾空港技術研究所資料、No.1294、2014、
②ペトロラタム被覆用防食効果判定センサ
【技術の利点】
・現状では被覆防止工の防食効果の確認には、カバーを外して目視調査する方法しかない。
・センサの取付により、開放点検が不要で遠隔監視が可能となり、新設・既設を問わず設置が可能とされる。

【技術内容】
・防食効果の有無判断の閾値として、積算電流量≧0.015A・hr を採用できることが提案されている。

被覆工の外観 被覆工の除去
積算電気量と腐食速度の関係 センサー「ペトモニ」
出典：港湾構造物のライフサイクルマネジメントの高度化のための点検診断および性能評価に関する技術
開発 http://www.jisf.or.jp/info/event/dobokushinpo/documents/3_dobokushinpo23.pdf
B.12 3D レーザースキャナ

【技術の利点】
・計測ユニットを車両に搭載することで、コンクリート表面の情報を連続的に記録する検査方法として実用化されている。
・同一形状が連続するようなコンクリート構造物の外観調査において、おもにトンネル覆工コンクリートや舗装路面を対象に適用される。
・3D レーザースキャナとマルチビームの計測結果から、陸・海の一元的な3 次元化が可能となる。これにより、災害現場の迅速な現況把握や、3D-CAD との連携による3 次元モデルの構成を容易とし、維持管理システムおよびGIS での活用や、CIM(Construction Information Modeling)への連携が可能となる。

【技術内容】
・対象物に触れることなく、スキャナから照射されたレーザーによって構造物等の3 次元空間位置情報（空間の点群データ）を瞬時に取得し、災害現場の現況把握、土量・面積・断面計算、完成予想図（パース・アニメーション）の作成ができる。

【関連技術の NETIS 登録】
●技術名称:3D レーザースキャナを用いた変状・損傷計測システム（短時間、省スペース作業、低コストによる高精度で効率的な計測資料作成技術）
登録 NO. ：QS-160004-A
コスト比較：
・条件:トンネル延長 500m
・従来技術-プリズムを用いたトータルステーションによる計測・・・・・・・316,436 円、5 日
・新技術・・・・・・・198,100 円、3 日

（出典）株式会社アルファ水工コンサルタンツ HP
海（マルチビーム）・陸（3D レーザースキャナ）一体計測
B.13 赤外線を用いた浮き・剥離の画像解析

【技術の利点】
・非破壊検査であり、迅速に大面積の測定ができる。

【技術の内容】
・赤外線法は、コンクリート中の変状と健全な部分とで熱の伝導が異なることを利用して、表面温度の分布状況から浮きや剥離の箇所を調べることができる。

【利用する際の留意点】
・測定精度および適用限界が気象条件に左右される。
・表面の光沢や汚れによる生じる温度差を欠陥と誤認することがある。
・検出深度は、構造物表面から50mm程度が限界である。
・欠陥の深さや空隙の厚さの推定は難しい。

【作業手順】
・対象物にできるだけ正対した位置から、適切な距離をおいて測定する。

【参考資料】
・港湾の施設の維持管理技術マニュアル（改訂版）、平成30年7月、一般財団法人沿岸技術研究センター
・コンクリート診断技術’19 [基礎編]、2019、p.136〜138

【関連技術のNETIS登録】
●技術名称：赤外線調査トータルサポートシステム Jシステム （赤外線法を用いたコンクリート構造物診断システム）
登録NO.：SK-110019-VE
コスト比較：
・条件：第三者被害防止を目的としたコンクリート橋梁のうき・剥離の点検 9,000m2
桁下高さ：10m 調査対象面積：30橋×300m2/橋
・従来技術－打音法による橋梁点検...7,339,200 円 84 日
・新技術...3,319,950 円 53 日
モルタル浮き部の調査事例

出典：コンクリート診断技術’19 [基礎編]、2019、pp. 136〜138
B.14 デジタルカメラによる画像解析

【技術の利点】
・デジタル画像は、CAD等の編集や加工が可能なデータとして保存される。
・これによりコンクリート表面の劣化状態をデータベース化することが可能となり、電子ファイル管理への発展性を持つ。
・望遠目視ができることは、経済性、安全面でも有利である。

【技術の内容】
・目視調査に置き換わる方法として、デジタル画像を用いてその劣化状態を判断する方法である。

デジタルカメラによる点検調査で使用するシステム

<table>
<thead>
<tr>
<th>撮影機材</th>
<th>デジタルカメラ</th>
<th>一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>撮影装置</td>
<td>全方位カメラ</td>
<td>移動しながらの撮影からパノラマ展開画像が生成できる。</td>
</tr>
<tr>
<td>自動撮影雲台</td>
<td>設定した撮影範囲内を所定のラップ率で連続的に撮影し、膨大な画像は専用ソフトにより1枚に合成できる。</td>
<td></td>
</tr>
<tr>
<td>UAV</td>
<td>デジタルカメラを搭載して上空から撮影する。</td>
<td></td>
</tr>
<tr>
<td>画像処理および資料制作機材</td>
<td>PCおよびソフトウェア</td>
<td>コンクリート表面画像からひび割れ等を認識する画像診断支援ソフトやCADソフトを使用することにより、変状図作成の効率化が図れる。</td>
</tr>
</tbody>
</table>

撮影条件の違いによる撮影装置
出典：コンクリート診断技術’19 [基礎編]、2019, p109

【利用する際の留意点】
・コンクリート表面の0.2mm幅のひび割れをデジタル画像（172万画素）で認識するために、撮影範囲の1辺辺長を約2.5m以下とする必要がある。
・コンクリート表面の汚れが少ない状態で調査する。
【作業手順】
・撮影した画像から画像診断支援ソフトのあおり機能、合成機能、ひび割れ特徴化機能を使用して、デジタル画像を作成する。
・上記画像から変状部分をスケッチして、画像診断支援ソフトを用いて変状図を作成する。
このソフトには、以下のような機能を有している。
収差補正機能、あおり補正機能、画像合成機能、座標機能、トレース機能、簡易計測機能

【参考資料】
・コンクリート診断技術'19 [基礎編]、2019、pp.108〜112、

【関連技術のNETIS登録】
●技術名称：HIVIDAS（ヒビダス）（画像診断によるコンクリートの浮き・はく離、ひび割れ調査）
登録NO. ： KT-130041-V
コスト比較：
・条件： 調査規模：トンネル625m（覆工面周長16m、覆工面積10,000m²）
・従来技術－調査員による直接目視やハンマー打撃による打音作図して解析･･･3,800,000 円、61 日
・新技術･･･2,915,000 円、50 日
C. 漁港施設に見られる主な損傷写真の事例

以下に、施設別に見られる主な損傷写真を、「水産基盤施設ストックマネジメントのためのガイドライン、平成27年5月改訂」の「参考資料-1-2」から転載する。ただし、写真で示す計測作業は、漁港利用者から情報提供を受けた漁港管理者が、現地へ出向き実施するものであり、漁港利用者はあくまで電話連絡などの情報提供のみである。

(1) 重力式防波堤に見られる主な損傷

1) 標準断面図及び主に見られる損傷位置

2) 調査位置ごとの変状事例

①重力式防波堤【施設全体】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>移動</th>
<th>調査項目</th>
<th>移動</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>水平移動量</td>
<td>変状</td>
<td>水平移動量</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 隣接ケースンとの間に側壁厚程度 (50cm程度 40cm〜50cm) のずれがある</td>
<td>老朽化度</td>
<td>c: 小規模な移動がある</td>
</tr>
</tbody>
</table>

図-参1-2.1 重力式防波堤標準断面図
<table>
<thead>
<tr>
<th>調査項目</th>
<th>沈下</th>
<th>調査項目</th>
<th>沈下</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>目地ずれ、段差</td>
<td>変状</td>
<td>目地ずれ、段差</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 隣接ケーソンとの間に数十 cm の段差がある</td>
<td>老朽化度</td>
<td>b: 隣接ケーソンとの間に数十 cm の段差がある</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>沈下</th>
<th>調査項目</th>
<th>沈下</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>目地ずれ、段差</td>
<td>変状</td>
<td>目地ずれ、段差</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c: 隣接ケーソンとの間に数 cm の段差がある</td>
<td>老朽化度</td>
<td>c: 隣接ケーソンとの間に数 cm の段差がある</td>
</tr>
</tbody>
</table>
②重力式防波堤【上部工】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 防波堤の性能に影響を及ぼす程度の欠損がある</td>
<td>老朽化度</td>
<td>a: 防波堤の性能に影響を及ぼす程度の欠損がある</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 幅 1cm 以上のひび割れがある</td>
<td>老朽化度</td>
<td>b: 幅 1cm 以上のひび割れがある</td>
</tr>
<tr>
<td>調査項目</td>
<td>コンクリートの劣化、損傷</td>
<td>調査項目</td>
<td>コンクリートの劣化、損傷</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b：小規模の欠損がある</td>
<td>老朽化度</td>
<td>c：幅1cm未満のひび割れがある</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c：幅1cm未満のひび割れがある</td>
<td>老朽化度</td>
<td>c：幅1cm未満のひび割れがある</td>
</tr>
</tbody>
</table>
③重力式防波堤【本体工】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷（RC）</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷（RC）</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 中詰材等が流出するような穴開き、ひび割れ、欠損がある</td>
<td>老朽化度</td>
<td>b: 広範囲に亘り鉄筋が露出している</td>
</tr>
</tbody>
</table>

本体工の穴開き

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷（RC）</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷（RC）</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 広範囲に亘り鉄筋が露出している</td>
<td>老朽化度</td>
<td>c: 局所的に鉄筋が露出している</td>
</tr>
</tbody>
</table>

本体工の穴開き
<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (RC)</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (RC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c：局所的に鉄筋が露出している</td>
<td>老朽化度</td>
<td>c：局所的に鉄筋が露出している</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (無筋)</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (無筋)</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b：小規模な欠損がある</td>
<td>老朽化度</td>
<td>b：小規模な欠損がある</td>
</tr>
<tr>
<td>調査項目</td>
<td>コンクリートの劣化、損傷（無筋）</td>
<td>調査項目</td>
<td>コンクリートの劣化、損傷（無筋）</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、欠損、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b：小規模な欠損がある</td>
<td>老朽化度</td>
<td>b：小規模な欠損がある</td>
</tr>
</tbody>
</table>
(2) 矢板式防波堤に見られる主な損傷
1) 標準断面図及び主に見られる損傷位置

図-参 1-2.2 矢板式防波堤標準断面図

2) 調査位置ごとの変状事例
①矢板式防波堤【上部工】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a：防波堤の性能を損なうような損傷がある</td>
<td>老朽化度</td>
<td>b：幅3mm以上のひび割れがある</td>
</tr>
<tr>
<td>調査項目</td>
<td>コンクリートの劣化、損傷</td>
<td>調査項目</td>
<td>コンクリートの劣化、損傷</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、欠損、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b：幅3mm以上のひび割れがある</td>
<td>老朽化度</td>
<td>b：広範囲に亘り鉄筋が露出している</td>
</tr>
</tbody>
</table>

![コンクリートの変状の写真](image1)

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b：広範囲に亘り鉄筋が露出している</td>
<td>老朽化度</td>
<td>c：局所的に鉄筋が露出している</td>
</tr>
</tbody>
</table>

![コンクリートの変状の写真](image2)
<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c: 局所的に鉄筋が露出している</td>
<td>老朽化度</td>
<td>c: 局所的に鉄筋が露出している</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c: 幅 3mm 未満のひび割れが見られる</td>
<td>老朽化度</td>
<td>c: 幅 3mm 未満のひび割れが見られる</td>
</tr>
</tbody>
</table>
②矢板式防波堤【鋼矢板等】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>鋼材の腐食、亀裂、損傷</th>
<th>調査項目</th>
<th>鋼材の腐食、亀裂、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>穴あきの有無、鋼材の腐食、表面の傷、維手の腐食状況</td>
<td>変状</td>
<td>穴あきの有無、鋼材の腐食、表面の傷、維手の腐食状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a:腐食による開孔や変形、その他の著しい損傷がある</td>
<td>老朽化度</td>
<td>b:全体的に発錆がある</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>鋼材の腐食、亀裂、損傷</th>
<th>調査項目</th>
<th>鋼材の腐食、亀裂、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>穴あきの有無、鋼材の腐食、表面の傷、維手の腐食状況</td>
<td>変状</td>
<td>穴あきの有無、鋼材の腐食、表面の傷、維手の腐食状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: L.W.L付近に孔食がある</td>
<td>老朽化度</td>
<td>c:部分的に発錆がある</td>
</tr>
</tbody>
</table>

[図] 開孔, 孔食
(3) 重力式護岸に見られる主な損傷

1) 標準断面図及び主に見られる損傷位置

2) 調査位置ごとの変状事例

① 重力式護岸【施設全体】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>移動</th>
<th>調査項目</th>
<th>移動</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>移動量</td>
<td>変状</td>
<td>移動量</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 法線の変状が見られる</td>
<td>老朽化度</td>
<td>b: 隣接するスパンとの間に10cm〜20cm程度のずれがある</td>
</tr>
</tbody>
</table>

図-参 1-2.3 重力式護岸標準断面図
<table>
<thead>
<tr>
<th>調査項目</th>
<th>移動</th>
<th>調査項目</th>
<th>移動</th>
</tr>
</thead>
<tbody>
<tr>
<td>变状</td>
<td>移動量</td>
<td>变状</td>
<td>移動量</td>
</tr>
<tr>
<td>老朽化度</td>
<td>上記以外の場合で、隣接するスパンとの間に10cm未満のずれがある</td>
<td>老朽化度</td>
<td>上記以外の場合で、隣接するスパンとの間に10cm未満のずれがある</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>沈下</th>
<th>調査項目</th>
<th>沈下</th>
</tr>
</thead>
<tbody>
<tr>
<td>变状</td>
<td>沖岸の沈下</td>
<td>变状</td>
<td>沖岸の沈下</td>
</tr>
<tr>
<td>老朽化度</td>
<td>隣接するスパンとの間に数cm程度の段差がある</td>
<td>老朽化度</td>
<td>隣接するスパンとの間に数cm程度の段差がある</td>
</tr>
</tbody>
</table>
②重力式護岸【上部工】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (RC)</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (RC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 複数方向に幅 3mm 程度のひび割れがある</td>
<td>老朽化度</td>
<td>c: 一方向に幅 3mm 程度のひび割れがある</td>
</tr>
</tbody>
</table>

老朽化度

- **c**: 局所的に鉄筋が露出している

![変状事例の写真](image1)

![変状事例の写真](image2)
<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷（無筋）</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷（無筋）</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、損傷、劣化的兆候など</td>
<td>変状</td>
<td>ひび割れ、損傷、劣化的兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 貫通ひび割れから土砂が流出している</td>
<td>老朽化度</td>
<td>b: 部材表面に対して面積比で10%未満の欠損がある</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c: 貫通ひび割れはあるが土砂が流出している兆候はない</td>
<td>老朽化度</td>
<td>c: 貫通ひび割れはあるが土砂が流出している兆候はない</td>
</tr>
</tbody>
</table>

![関連図1](image1)

![関連図2](image2)
③重力式護岸【護岸の背後、または本体】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>階段、吸出し</th>
<th>調査項目</th>
<th>階段、吸出し</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>沈下、陥没、目地ずれ等が起きている箇所、護岸背後の状況</td>
<td>変状</td>
<td>沈下、陥没、目地ずれ等が起きている箇所、護岸背後の状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 護岸の背後の土砂が流出している</td>
<td>老朽化度</td>
<td>a: 護岸の背後の地盤が陥没している</td>
</tr>
</tbody>
</table>

![変状事例の写真](image1)

<table>
<thead>
<tr>
<th>調査項目</th>
<th>階段、吸出し</th>
<th>調査項目</th>
<th>階段、吸出し</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>沈下、陥没、目地ずれ等が起きている箇所、護岸背後の状況</td>
<td>変状</td>
<td>沈下、陥没、目地ずれ等が起きている箇所、護岸背後の状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 目地に顕著な開き、ずれがある</td>
<td>老朽化度</td>
<td>c: 目地に軽微な開き、ずれがある</td>
</tr>
</tbody>
</table>

![変状事例の写真](image2)
(4) 重力式係船岸に見られる主な損傷

1) 標準断面図及び主に見られる損傷位置

図-参1-2.4 重力式係船岸標準断面図

2) 調査位置ごとの変状事例

①重力式係船岸【岸壁法線】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>凹凸出入り</th>
<th>調査項目</th>
<th>凹凸出入り</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>移動量</td>
<td>変状</td>
<td>移動量</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 隣接するスパンとの間に 10〜20cm 程度の凹凸がある</td>
<td>老朽化度</td>
<td>c: 上記以外の場合で、隣接するスパンとの間に 10cm 未満の凹凸がある</td>
</tr>
</tbody>
</table>
②重力式係船岸【エプロン】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>沈下、陥没</th>
<th>变状</th>
<th>調査項目</th>
<th>沈下、陥没</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>一</td>
<td>一</td>
<td>変状</td>
<td>一</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 重力式本体背後の土砂が流出している</td>
<td>老朽化度</td>
<td>b: 重力式本体目地(上部工含む)に顕著な開き、ずれがある</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>老朽化度</td>
<td>c: 重力式本体目地(上部工含む)に軽微な開き、ずれがある</td>
<td></td>
</tr>
</tbody>
</table>

![本体背後(内部)の空洞](image1)

![エプロンに3cm以上の沈下(段差)がある](image2)
<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートまたはアスファルトの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートまたはアスファルトの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>-</td>
<td>変状</td>
<td>-</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: コンクリート舗装でひび割れが 2m/m²以上である</td>
<td>老朽化度</td>
<td>a: 車両の通行や歩行に支障があるひび割れや損傷が見られる</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>調査項目</td>
<td>コンクリートまたはアスファルトの劣化、損傷</td>
<td>調査項目</td>
<td>コンクリートまたはアスファルトの劣化、損傷</td>
</tr>
<tr>
<td>变状</td>
<td>-</td>
<td>变状</td>
<td>-</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: コンクリート舗装でひび割れが 0.5〜2m/m²である</td>
<td>老朽化度</td>
<td>c: 若干のひび割れが見られる</td>
</tr>
</tbody>
</table>

ひび割れ、欠損による「歩行」に支障のある段差

參-46
③重力式係船岸【上部工】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>幅3mm以上のひび割れがある</td>
<td>老朽化度</td>
<td>幅3mm以上のひび割れがある</td>
</tr>
</tbody>
</table>

老朽化度
- 幅3mm以上のひび割れがある

画像：幅3mm以上のひび割れ

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>幅3mm以上のひび割れがある</td>
<td>老朽化度</td>
<td>広範囲に亘り鉄筋が露出している</td>
</tr>
</tbody>
</table>

画像：幅3mm以上のひび割れ

画像：広範囲に亘り鉄筋が露出している
<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
<td>変状</td>
<td>ひび割れ、剥離、損傷、鉄筋露出、劣化の兆候など</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c：幅3mm未満のひび割れがある</td>
<td>老朽化度</td>
<td>c：幅3mm未満のひび割れがある</td>
</tr>
</tbody>
</table>
(5) 浮体式係船岸に見られる主な損傷

1） 標準断面図及び主に見られる損傷位置

図-参 1-2.5 浮体式係船岸標準断面図

2） 調査位置ごとの変状事例

① 浮体式係船岸【エプロン】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートまたはアスファルトの劣化、損傷</th>
<th>調査項目</th>
<th>コンクリートまたはアスファルトの劣化、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>コンクリートまたはアスファルトのひび割れ、凹凸、段差</td>
<td>変状</td>
<td>コンクリートまたはアスファルトのひび割れ、凹凸、段差</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: コンクリート舗装でひび割れが 2m/m²以上である</td>
<td>老朽化度</td>
<td>b: アスファルト舗装でひび割れ率が 20～30%以上である</td>
</tr>
<tr>
<td>調査項目</td>
<td>コンクリートまたはアスファルトの劣化、損傷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>変状</td>
<td>コンクリートまたはアスファルトのひび割れ、凹凸、段差</td>
<td></td>
<td></td>
</tr>
<tr>
<td>老朽化度</td>
<td>調査項目 コンクリートまたはアスファルトの劣化、損傷</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>変状 コンクリートまたはアスファルトのひび割れ、凹凸、段差</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>老朽化度 c: 若干のひび割れが見られる</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

②浮体式係船岸【ポンツーン内部】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>本体の亀裂、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>浸水状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: ひび割れ、亀裂、損傷による浸水が見られる</td>
</tr>
</tbody>
</table>

ひび割れ箇所の浸水
③浮体式係船岸【ポンツーン外部（鋼製、RC/PC製）】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>鋼材の腐食、亀裂、損傷</th>
<th>調査項目</th>
<th>鋼材の腐食、亀裂、損傷</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>穴あきの有無、鋼材の腐食、表面の傷の状況</td>
<td>変状</td>
<td>穴あきの有無、鋼材の腐食、表面の傷の状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 腐食による開孔や変形、その他の著しい損傷がある</td>
<td>老朽化度</td>
<td>a: 腐食による開孔や変形、その他の著しい損傷がある</td>
</tr>
<tr>
<td></td>
<td>b: 全体に発錆がある</td>
<td></td>
<td>c: 部分的に発錆がある</td>
</tr>
</tbody>
</table>
4. 浮体式係船岸【ボンツーン外部(鋼製、RC/PC製)】における変状事例

<table>
<thead>
<tr>
<th></th>
<th>コンクリートの劣化、損傷(RC)</th>
<th></th>
<th>コンクリートの劣化、損傷(RC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査項目</td>
<td></td>
<td>変状</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ひび割れの発生方向、本数、長さと幅、かぶりの剥離状況、錆汁の発生状況、鉄筋の腐食状況</td>
<td></td>
<td>ひび割れの発生方向、本数、長さと幅、かぶりの剥離状況、錆汁の発生状況、鉄筋の腐食状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: かぶりの剥離がある</td>
<td></td>
<td>a: 錆汁が広範囲に発生している</td>
</tr>
</tbody>
</table>

参考画像:
- かぶりの剥落による鉄筋露出
- 幅 3mm 以上の鉄筋に沿ったひび割れが存在する
<table>
<thead>
<tr>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (RC)</th>
<th>調査項目</th>
<th>コンクリートの劣化、損傷 (RC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>ひび割れの発生方向、本数、長さと幅、かぶりの剥離状況、錆汁の発生状況、鉄筋の腐食状況</td>
<td>変状</td>
<td>ひび割れの発生方向、本数、長さと幅、かぶりの剥離状況、錆汁の発生状況、鉄筋の腐食状況</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 錆汁が部分的に発生している</td>
<td>老朽化度</td>
<td>c: 軽微なひび割れがある</td>
</tr>
</tbody>
</table>

- 老朽化度 b: 錆汁が部分的に発生している
- 老朽化度 c: 軽微なひび割れがある

部分的な錆汁
⑤浮体式係船岸【係留杭・係留チェーン】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>摩耗、塗装、腐食</th>
<th>調査項目</th>
<th>摩耗、塗装、腐食</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>係留杭の状態、係留チェーンの破断</td>
<td>変状</td>
<td>係留杭の状態、係留チェーンの破断</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a: 係留杭に変形、著しい摩耗、開孔がある</td>
<td>老朽化度</td>
<td>b: 係留杭に軽微な摩耗や孔食がある</td>
</tr>
</tbody>
</table>

![係留杭の破断](image1)

破損

<table>
<thead>
<tr>
<th>調査項目</th>
<th>摩耗、塗装、腐食</th>
<th>調査項目</th>
<th>摩耗、塗装、腐食</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>係留杭の状態、係留チェーンの破断</td>
<td>変状</td>
<td>係留杭の状態、係留チェーンの破断</td>
</tr>
<tr>
<td>老朽化度</td>
<td>b: 係留杭に軽微な摩耗や孔食がある</td>
<td>老朽化度</td>
<td>c: 被覆材に軽微な損傷が見られる</td>
</tr>
</tbody>
</table>

![塗装剥がれ](image2)

塗装剥がれ
<table>
<thead>
<tr>
<th>調査項目</th>
<th>摩耗、塗装、腐食</th>
<th>調査項目</th>
<th>摩耗、塗装、腐食</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>係留杭の状態、係留チェーンの破断</td>
<td>変状</td>
<td>係留杭の状態、係留チェーンの破断</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c：被覆材に軽微な損傷が見られる</td>
<td>老朽化度</td>
<td>c：被覆材に軽微な損傷が見られる</td>
</tr>
</tbody>
</table>

⑥浮体式係船岸【連絡橋・渡橋】における変状事例

<table>
<thead>
<tr>
<th>調査項目</th>
<th>安定性、損傷、腐食</th>
<th>調査項目</th>
<th>安定性、損傷、腐食</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>移動の安定性、鈍、傷の有無、塗装</td>
<td>変状</td>
<td>移動の安定性、鈍、傷の有無、塗装</td>
</tr>
<tr>
<td>老朽化度</td>
<td>a：連絡橋が不安定でポンツーンへの移動が困難である</td>
<td>老朽化度</td>
<td>a：連絡橋が不安定でポンツーンへの移動が困難である</td>
</tr>
</tbody>
</table>

| 間隔が生じ、移動が危険な状態 | 塗装剥がれ | 塗装剥がれ | 間隔が生じ、移動が危険な状態 |

出典

参-55
<table>
<thead>
<tr>
<th>調査項目</th>
<th>安定性、損傷、腐食</th>
<th>調査項目</th>
<th>安定性、損傷、腐食</th>
</tr>
</thead>
<tbody>
<tr>
<td>変状</td>
<td>移動の安定性、錆、傷の有無、塗装</td>
<td>変状</td>
<td>移動の安定性、錆、傷の有無、塗装</td>
</tr>
<tr>
<td>老朽化度</td>
<td>c: 塗装の剥離や錆が見られる</td>
<td>老朽化度</td>
<td>c: 塗装の剥離や錆が見られる</td>
</tr>
</tbody>
</table>

![橋梁の写真](image1)

![橋梁の写真](image2)
D. 調査結果の記録に活用できる技術の事例

D.1 維持管理情報プラットフォーム

【活用の利点】

・点検記録を記録・保存することは、老朽化の進展状況等を効率的に把握でき、以降の機能保全計画の見直しの際にも必要不可欠となる。
・スパン割図・変状図等の図面データや写真データ及び簡易調査（重点項目）、日常管理点検の記録・保存について、維持管理情報プラットフォームで一括管理が可能となる。
・必要なときに必要な情報を取り出すことが容易となり、作業の効率化を図れる。

【システムの構成】

・GIS（地理情報システム）やGPS（全地球測位システム）と、漁港台帳や日常点検結果等を連動させた漁港施設の維持管理情報プラットフォームのシステムを構築したものである。漁港管理者に対する技術的支援の一環として、維持管理に係わる情報の蓄積・更新の適正化やそれらのデータの利活用の促進を目的としている。
・システムの構成を次に示す。

①基本部分（データベース機能）
1）施設現況調査にかかる情報
2）施設機能診断結果にかかる情報
3）機能保全対策にかかる情報
4）上記に関係する資料（図面、設計関係資料、調査記録等）
5）日常・臨時・定期の各種点検データの格納・参照・分析

②拡張部分（各種分析機能）
1）対策コストにかかる分析機能
2）老朽化予測機能
3）登録情報の共有化機能
【システムの概念図】

出典：平成30年度調査調査研究論文集No.29 pp.7-12（一般財団法人漁港漁場漁村総合研究所）

【参考資料】
・平成30年度調査調査研究論文集No.29 pp.7-12（一般財団法人漁港漁場漁村総合研究所）
・漁港施設維持管理情報プラットフォーム操作説明書、http://www.jific.or.jp/?p=922
D.2 漁港施設の点検システム

【活用の利点】
・現地で容易に点検情報の登録が行えるため、点検作業の負担を低減することが出来る。
・日常点検の記録を適切に保全でき、蓄積された登録データの利活用を一元管理の下で行え（維持管理情報プラットフォームとの連携も可能）。

【システムの構成】
・漁港施設に関して、スマホを利用し、写真を中心とする施設の現況データを撮影、入力、伝達、蓄積したデータベースを作成して、そのデータを利用できるシステムである。システムの構成を次に示す。

【システムの使い方】
・施設の点検者が点検結果を、スマホを利用して写真と必要事項を入力し、サーバに送信すると、漁港施設の管理者にデータの保管場所のURLを記入したメールが届く。そのURLを開くと点検結果を閲覧できる。
・データは保管され、検索システムにより時間経過による変化や指定日時の状況閲覧などの処理ができる。
【漁港施設の点検システムでの選択肢】

【参考資料】
E. 日常点検記入シート及び記載例
新たに作成する日常点検記入シート及び記載例を次に示す。

（様式集）
・外郭施設（重力式・矢板式・杭式）
・係船施設（重力式・矢板式・桟橋式）
・外郭・係船施設（浮体式）
・船揚場
・航路・泊地

（記載例）
・外郭施設（重力式・矢板式・杭式）健全度 A・B の記入例
・係船施設（重力式・矢板式・桟橋式）健全度 C・D の記入例
<table>
<thead>
<tr>
<th>項目</th>
<th>調査位置</th>
<th>評価</th>
<th>老朽化の種類</th>
<th>有無</th>
<th>状況（スパンNO.）</th>
</tr>
</thead>
<tbody>
<tr>
<td>重力式防波堤</td>
<td>施設全体</td>
<td>☐</td>
<td>移動</td>
<td>☐</td>
<td>水平移動</td>
</tr>
<tr>
<td>重力式護岸</td>
<td>☐</td>
<td>目地のずれ、傾斜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>杉板式防波堤</td>
<td>施設全体</td>
<td>☐</td>
<td>凹凸、出入り</td>
<td></td>
<td></td>
</tr>
<tr>
<td>沖波堤</td>
<td>☐</td>
<td>腐食・亀裂・損傷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>杉板・杭</td>
<td>☐</td>
<td>损傷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>共通</td>
<td>上部工</td>
<td>☐</td>
<td>コンクリートの劣化、損傷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>附帯施設</td>
<td>消波工</td>
<td>☐</td>
<td>青空</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【変状写真掲載欄】

<table>
<thead>
<tr>
<th>施設名</th>
<th>調査を実施した範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>背後地</td>
<td>資料、吸出し</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>調査位置</th>
<th>評価</th>
<th>施設名</th>
<th>調査を実施した範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>老朽化</td>
<td>写真NO.1</td>
<td>調査位置</td>
<td>（スパンNO.）</td>
<td></td>
</tr>
<tr>
<td>写真NO.2</td>
<td>調査位置</td>
<td>（スパンNO.）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【その他特記事項】

写真NO.3

写真NO.4
水産基盤施設日常点検記入シート【②係船施設（重力式・矢板式・桟橋式）】

對方施設（重力式・矢板式・桟橋式）：

<table>
<thead>
<tr>
<th>寫真NO.1</th>
<th>寫真NO.2</th>
<th>寫真NO.3</th>
<th>寫真NO.4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>寫真NO.1</th>
<th>寫真NO.2</th>
<th>寫真NO.3</th>
<th>寫真NO.4</th>
</tr>
</thead>
</table>

【その他特記事項】
水産基盤施設日常点検記入シート【③外郭・係船施設（浮体式）】

<table>
<thead>
<tr>
<th>施設名</th>
<th>構造形式</th>
<th>調査者所属</th>
<th>調査者氏名</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>各項目に対する該当する欄をチェックする。（例：☑）</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>対象施設</th>
<th>調査位置</th>
<th>該当</th>
<th>老朽化の種類</th>
<th>有無</th>
<th>状況（スパンNO.）</th>
</tr>
</thead>
<tbody>
<tr>
<td>浮防波堤</td>
<td>浮体式係船岸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td>コンクリートの劣化・損傷</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td>鋼材の腐食</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>連絡橋・渡橋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 附帯施設 | | | | | |
|-----------|---|---|---|---|
| 防波堤 | | | | |
| ☐ | | | | |
| | | | | |
| 係船施設 | | | | |
| ☐ | | | | |
| | | | | |
| 排水設備 | | | | |
| ☐ | | | | |
| | | | | |

（注）「連絡橋・渡橋」は「浮体式係船岸」に限定

<table>
<thead>
<tr>
<th>調査結果記入欄</th>
<th>写真NO.1</th>
<th>写真NO.2</th>
<th>写真NO.3</th>
<th>写真NO.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>写真</td>
<td>撮影年月日: 令和</td>
<td>撮影年月日: 令和</td>
<td></td>
<td></td>
</tr>
<tr>
<td>調査結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>写真</td>
<td>撮影年月日: 令和</td>
<td>撮影年月日: 令和</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【その他特記事項】
水産基盤施設日常点検記入シート ④船揚場

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
<th>調査位置</th>
<th>評価</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>船置場</td>
<td>□</td>
<td>屋根の劣化・損傷</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>柱の変形</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>油断・出入口の不整</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>サークル・アスファルトの劣化・損傷</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>前面壁の変形・損傷</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>附帯施設</td>
<td>□</td>
<td>防潮材の変形・腐食・破損等</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>係船柱・係船環の変形・腐食・破損等</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>車止めの変形・腐食・破損等</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>排水設備の変形・腐食・破損等</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>階段・梯子の変形・腐食・破損等</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

【その他特記事項】

- 撮影年月日: 令和
- 船揚場
- 附帯施設
- 防潮材の変形
- スパンNO.
- 撮影年月日: 令和

【その他特記事項】

- 撮影年月日: 令和
- 船揚場
- 附帯施設
- 防潮材の変形
- スパンNO.
- 撮影年月日: 令和
水産基盤施設日常点検記入シート【⑤航路・泊地】

<table>
<thead>
<tr>
<th>検査結果記入シート：健全度の評価単位で作成</th>
<th>直近の定期点検実施日： 平成 年 月 日(健全度)</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査年月日: 令和年月日</td>
<td>天候: 晴 曇 雨</td>
</tr>
<tr>
<td>施設名</td>
<td>調査を実施した範囲</td>
</tr>
</tbody>
</table>

各項目に対して、該当する欄をチェックする。（例：☑）

<table>
<thead>
<tr>
<th>対象施設</th>
<th>調査位置</th>
<th>該当</th>
<th>老朽化の種類</th>
<th>状況（スパンNO.）</th>
</tr>
</thead>
<tbody>
<tr>
<td>航路・泊地</td>
<td>水面</td>
<td>□</td>
<td>流木等漂流物</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>水深</td>
<td>□</td>
<td>水深不足による利用上の支障</td>
<td>□</td>
</tr>
</tbody>
</table>

【変状写真掲載欄】

<table>
<thead>
<tr>
<th>写真NO.1</th>
<th>写真NO.2</th>
<th>写真NO.3</th>
<th>写真NO.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査位置</td>
<td>調査位置</td>
<td>調査位置</td>
<td>調査位置</td>
</tr>
<tr>
<td>所見:</td>
<td>所見:</td>
<td>所見:</td>
<td>所見:</td>
</tr>
</tbody>
</table>

撮影年月日: 令和年月日

【その他特記事項】
健全度A・Bの記入例

設置結果記入シート: 健全度の評価単位で作成

<table>
<thead>
<tr>
<th>設置結果記入シート: 健全度の評価単位で作成</th>
<th>直近の定期点検実施日: 平成○年○月○日（健全度B）</th>
</tr>
</thead>
</table>
| 設置年月日： 名和 | 年 月 日 天候： 雨
| 漁港名： | 梅港
| 横置型式： | 役力式防波堤
| 設置者名： | 設備者名
| 施設名： | 防波堤
| 管理機関： | 施設全体（スパンNo.1〜No.20）

各項目に対する該当する欄をチェックする（例： □）

<table>
<thead>
<tr>
<th>対象施設</th>
<th>設置位置</th>
<th>該当</th>
<th>老朽化の種類</th>
<th>有無</th>
</tr>
</thead>
<tbody>
<tr>
<td>役力式防波堤</td>
<td>施設全体</td>
<td>□ 移動</td>
<td>水平移動</td>
<td></td>
</tr>
<tr>
<td>役力式防波堤</td>
<td>施設全体</td>
<td>□ 水平移動(NO.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体工</td>
<td>□ コンクリートの劣化、損傷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢板式防波堤</td>
<td>施設法線</td>
<td>□ 凹凸、出切り</td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢板式防波堤</td>
<td>施設全体</td>
<td>□ 滑落、損傷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢板式防波堤</td>
<td>施設全体</td>
<td>□ 滑落、損傷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>共通</td>
<td>上部工</td>
<td>□ コンクリートの劣化、損傷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>護岸の位置</td>
<td>背後地</td>
<td>□ 障害</td>
<td></td>
<td></td>
</tr>
<tr>
<td>附属施設</td>
<td>背後地</td>
<td>□ 障害</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

老朽化: 写真NO.1

- 調査位置： 起点からの撮影（スパンNO.）
- 所見： 前回点検から新たな変状は見られない

老朽化: 写真NO.2

- 調査位置： 終点からの撮影（スパンNO.）
- 所見： 前回点検から新たな変状は見られない

老朽化: 写真NO.3

- 調査位置： 上部工（スパンNo.10）
- 所見： 幅の広いひび割れがあるが、前回と大きな差異は認められない

老朽化: 写真NO.4

- 調査位置： 施設全体（スパンNO.12）
- 所見： 大きな水平移動があるが、前回と大きな差異は認められない

代表スパンを選定し、スパン写真とその状況を記載する。

【その他特記事項】

スパンNo.10近辺の港内側に堆砂が進んでいて、干潮時には波の条件によっては船底がこすることがある。 （漁業者ヒアリング）
健全度C・Dの記入例

水車基盤施設 20年点検記入シート 20年点検記入シート 20年点検記入シート 20年点検記入シート

<table>
<thead>
<tr>
<th>対象施設</th>
<th>調査位置</th>
<th>摂影</th>
<th>評価</th>
<th>有無</th>
<th>状況（スパンNo.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>塔壁(樋)</td>
<td>□</td>
<td>凹凸・出入り</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>エプロン</td>
<td>□</td>
<td>出水下落</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部工</td>
<td>□</td>
<td>コンクリートの劣化・破損</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水防工（溝）</td>
<td>□</td>
<td>コンクリートの劣化・破損</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢板・杭</td>
<td>□</td>
<td>腐食・亀裂・損傷等</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>落下 (注)</td>
<td>□</td>
<td>損傷・変形</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>附属施設</td>
<td>□</td>
<td>損傷・変形等</td>
<td>□</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）「落下」は「樋構式係船桟」に限定

調査結果記入シート: 健全度の評価単位で作成

近造の定期点検実施日: 20年×月×日 (健全度C)

調査年月日: 令和 ×年 ×月 ×日 天候: (晴) 番号: 令和

施設名: 図面 構造形式: 樋式 施設分類: 附属施設 (スパンNo.1〜No.32)

踏査を行い、起終点から施設の写真を撮影する

調査位置: 起点から撮影 (スパンNo.)

所見: 前回点検からの変化や新たな変状は見られない

撮影年月日: 令和 ×年 ×月 ×日

調査位置: 終点から撮影 (スパンNo.)

所見: 前回点検からの変化や新たな変状は見られない

撮影年月日: 令和 ×年 ×月 ×日

調査位置: エプロン (スパンNo. 15)

所見: 樋落 (沈下) がある。【新築発見】

撮影年月日: 令和 ×年 ×月 ×日

新しい変状を発見した場合は様式に記載する

利用者に聞き取りを行い、利用上支障がないか確認する。

【その他特記事項】
スパンNo.8にある照明の点滅している。 （警備者と協力）