4. 手引の改訂案の作成

4-1 手引の改訂案の作成概要

「漁港海岸事業設計の手引(令和2年度版)」を対象に、以下の参照・引用文献について必要な更新を行い、手引の改定案としてとりまとめる。

- ・ 漁港・漁場の施設の設計参考図書(2023年版)及びその他手引で参照・引用している文献
- ・ 令和5年度事業により作成された手引の改訂案において参照・引用している文献

4-2 参照・引用文献の更新

本事業では、主に以下項目について手引の参照・引用文献および記載内容を更新した。このうち②③については、参照・引用文献の更新に伴い、現行の手引(令和2年度版)の設計手法が変更されることに留意が必要である。

- ① 本書の使い方 (第1章 総論)・・・・・・図 4-3.1
- ② 浅水変形と砕波 (2-3 波) ・・・・・・図 4-3.2
- ③ 伝達波高の精査(3-6 潜堤・人工リーフ) ・・図 4-3.4
- ④ 参照・引用文献の名称及び参照頁の更新(※手引の全体を対象)

4-3 手引の改定案のとりまとめ

以上を踏まえ、令和 5 年度事業及び本事業での更新箇所を合わせて手引の改 訂案を作成した。

手引の改訂案の全文を資料 3 に、新旧対照表を資料 4 に記載する。なお、資料 4 は新旧対照のため体裁を調整しており、資料 3 に対してページ番号及び体裁が 一部異なっている。

改訂前

1-2 本書の使い方

第1章 総 論

1-1 本書の目的

本書は、「海岸保全施設の技術上の基準・同解説」に記載されている処理基準及び技術的 助言を踏まえて、漁港海岸の実際の計画・設計を行うに当たり参考となる具体的な技術を 紹介するとともに実務者の参考となるような実施例を示したものである。

平成23年3月の東日本大震災において、これまでの想定をはるかに超えた巨大な地震・ 津波により甚大な被害を受け、水門・陸開等の閉鎖に従事した消防団員等が多く犠牲になったことや、高度経済成長期に集中的に整備された海岸保全施設の老朽化が進み、戦略的な維持管理・更新を行うことによりトータルコストの縮減を実現する必要性が高まったことなどから、平成30年に「海岸保全施設の技術上の基準・同解説」が改定された。

本書では、この改定を踏まえ、実務者や計画・設計に携わる技術者、あるいは施工に関係する技術者の参考となるようにわかりやすくとりまとめたものとなっている。

なお、土木工学は経験に基づく技術の蓄積によって発展しており、技術の知見や実践方法に関しても日々更新されている。したがって、本書で紹介される考え方・手法等やこれ らに関係する文献等については、可能な限り実務時点において確認・精査されることをお 勧めする。

1-2 本書の使い方

「海岸保全施設の技術上の基準・同解説」では、局長通知(平成27年2月2日付)の記述として「法定受託事務の処理基準」(以下、「処理基準」という。)と「技術的助言」を示している。後者については、国から海岸管理者等に対し、技術的な助言を行うものであり、法的拘束力はない。設計者は、法的拘束力のある海岸法14条、省令及び本通知における法定受託事務の処理基準(以下、「技術上の基準」という)を遵守することが求められるとともに、「技術的な助言」の内容を参考にすることができる。

本書は、漁港海岸の計画・設計に携わる現場技術者の実務の参考となるよう、処理基準 及び技術的助言のうち漁港海岸の特徴をふまえた施設計画・設計を行うにあたり特に考慮 すべき事項を中心に、漁港海岸の設計で実用的に使用されてきた「漁港海岸事業設計の手 引き」(平成25年度版)に性能設計の考え方を導入する形で記述しているものである。

従って、本書では「海岸保全施設の技術上の基準・同解説」の解説の項に詳しく記載されている事項については省略しているため、「海岸保全施設の技術上の基準・同解説」についても併読することをお勧めする。

1-2 本書の使い方 第1章 総 論

1-1 本書の目的

本書は、「海岸保全施設の技術上の基準・同解説」に記載されている処理基準及び技術的 助言を踏まえて、漁港海岸の実際の計画・設計を行うに当たり参考となる具体的な技術を 紹介するとともに実務者の参考となるような実施例を示したものである。

平成23年3月の東日本大震災において、これまでの想定をはるかに超えた巨大な地震・ 津波により基大な被害を受け、水門・陸開等の閉鎖に従事した消防団員等が多く犠牲になったことや、高度経済成長期に集中的に整備された海岸保全施設の老朽化が進み、戦略的な維持管理・更新を行うことによりトータルコストの縮減を実現する必要性が高まったことなどから、平成30年に「海岸保全施設の技術上の基準・同解説」が改定された。

本書では、この改定を踏まえ、実務者や計画・設計に携わる技術者、あるいは施工に関係する技術者の参考となるようにわかりやすくとりまとめたものとなっている。

なお、土木工学は経験に基づく技術の蓄積によって発展しており、技術の知見や実践方 法に関しても日々更新されている。したがって、本書で紹介される考え方・手法等やこれ らに関係する文献等については、可能な限り実務時点において確認・精査されることをお 勧めする。

1-2 本書の使い方

「海岸保全施設の技術上の基準・同解説」では、局長通知(平成27年2月2日付)の記述として「法定受託事務の処理基準」(以下、「処理基準」という。)と「技術的助言」を示している。後者については、国から海岸管理者等に対し、技術的な助言を行うものであり、法的拘束力はない。設計者は、法的拘束力のある海岸法14条、省令及び本通知における法定受託事務の処理基準(以下、「技術上の基準」という)を遵守することが求められるとともに、「技術的な助言」の内容を参考にすることができる。

本書は、漁港海岸の計画・設計に携わる現場技術者の実務の参考となるよう、処理基準 及び技術的助言のうち漁港海岸の特徴をふまえた施設計画・設計を行うにあたり特に考慮 すべき事項を中心に、漁港海岸の設計で実用的に使用されてきた「漁港海岸事業設計の手 引き」(平成25年度版)に性能設計の考え方を導入するとともに、気候変動適応策に関する 知見を反映した形で記述しているものである。

従って、本書では「海岸保全施設の技術上の基準・同解説」の解説の項に詳しく記載されている事項については省略しているため、「海岸保全施設の技術上の基準・同解説」につ

(加筆) 手引改訂 版の位置づけ

図 4-3.1 本調査での更新箇所例(第1章 1-2 本書の使い方)

改訂前 改訂後 2-3 波 25 不規則波の砕波帯での波高変化を海底勾配ごとに示した算定図が「海岸保全施設の技術上 砕波現象は非線形性の強い現象で、数値計算で波高変化を求めることが難しい。実用的に は、水理実験で得られた波高変化をもとにして提案された算定図を用いることができる。 の基準・同解説」(p. 2-34~)に記載されている。これらの水深による波高変化の算定図は、 不規則波の砕波帯での波高変化を海底勾配ごとに示した算定図が「海岸保全施設の技術上 いずれも波の不規則性や有限振幅性を考慮したものであるが、前者は、最高波高 Hmax と有 義波高 H_{1/3}のそれぞれについて算定図が示されており、後述の合田式により波力を算定する の基準・同解説 (2018)」(p. 2-35~)に記載されている。これらの水深による波高変化の算定 場合に用いられる。 図は、いずれも波の不規則性や有限振幅性を考慮したものであるが、前者は、最高波高 Hmax なお、水深による波高変化の算定図は、海底勾配が 1/10 までしか示されていないが、それ と有義波高 H_{1/3} のそれぞれについて算定図が示されており、後述の合田式により波力を算定 よりも急勾配の斜面上でも 1/10 勾配の算定図を近似的に適用でき、数値的に砕波限界を検 する場合に用いられる。 討する場合の砕波限界条件式も示されている。 なお、水深による波高変化の算定図は、海底勾配が 1/10 までしか示されていないが、それ よりも急勾配の斜面上でも 1/10 勾配の算定図を近似的に適用でき、数値的に砕波限界を検 $\frac{H_b}{L_0} = 0.17 \left[1 - \exp \left\{ -1.5 \frac{\pi h_b}{L_0} \left(1 + 15 \tan^{4/3} \beta \right) \right\} \right]$ 討する場合の砕波限界条件式も示されている。 ここに. $\frac{H_b}{L_0} = 0.17 \left[1 - \exp \left\{ -1.5 \frac{\pi h_b}{L_0} \left(1 + 15 \tan^{4/3} \beta \right) \right\} \right]$ H. : 砕波限界波高 h。: 砕波限界水深 ここだ. tan β:海底勾配 H_b : 砕波限界波高 h_b : 砕波限界水深 この近似式は海底勾配が急な場所ではやや過大な砕波高を与える傾向があるため、海底勾 tanβ:海底勾配 配が 1/50 より急な場合にもほぼ妥当な砕波高を与えるよう、tan β に関わる定数 15 を 11 に 低減することで、海底勾配が 1/10 のときには砕波指標 H_b/h_bの値が最大 11%小さくなるが、 この近似式は海底勾配が急な場所ではやや過大な砕波高を与える傾向があるため、海底勾 海底勾配 1/50 では 2%の低減に留まる。 配が 1/50 より急な場合にもほぼ妥当な砕波高を与えるよう、 $\tan \beta$ に関わる定数 15 を 11 に 低減することで、海底勾配が 1/10 のときには砕波指標 H_a/h_aの値が最大 11%小さくなるが、 また、波の浅水変形と砕波の詳細については、「漁港・漁場の施設の設計の手引き」(p.41 海底勾配 1/50 では 2%の低減に留まる。 ~) にも、有限振幅性、不規則性、砕波を考慮した水深による波高の変化の算定図が記載さ れている。 この算定図は、激浪時及び通常荒天時に砕波帯となることが多い漁港・漁場において安全 側の設計ができるように作成されており、さらに砕波によるウェーブセットアップ及び波の 不規則性に起因するサーフビートを考慮したものとなっており、漁港・漁場で使われる波力 算定式を適用する場合に用いられる。 2) 屈 折

同一周期であれば、水深が大きい方が波速が大きい。水深が異なる境界に斜めに波が入射

した場合、波峰の両端の進行速度を比較すると、水深の大きい側が早く進み、その分だけ波

峰線の方向が変わる。その結果、波向は浅い領域でより境界に直角になるように変化する。

これを屈折といい、図のような関係をスネルの法則という。すなわち屈折による波向きの変

(2.3.2.2)

化(屈折角) α は次式で示される。 C は波速である。

sin a/c=const

同一周期であれば、水深が大きい方が波速が大きい。水深が異なる境界に斜めに波が入射 した場合、波峰の両端の進行速度を比較すると、水深の大きい側が早く進み、その分だけ波 峰線の方向が変わる。その結果、波向は浅い領域でより境界に直角になるように変化する。 これを屈折といい、図のような関係をスネルの法則という。すなわち屈折による波向きの変 化(屈折角) α は次式で示される。 C は波速である。

(更新)出典名、参

(削除)旧版の「漁

港・漁場の施設の

設計の手引」にお

ける波浪変形の算

定手法

照頁

sin a /c=const (2.3.2.2)

図 4-3.2 本調査での更新箇所例 (第2章 2-3 波)

50 第2章 設計条件 この両者を把握することが重要で <u>ある。</u> 海浜形状の考え方については、「海岸保全施設の技術」の基準・同解説 (2018)」(p. 2-112 ~)の「2.7 海浜形状」を参照のこととする。 2-8 地 ##################################	新)出典名、参
	机/山央石、沙
[処理基準] 設計に用いる地盤条件は、原則として地盤調査及び室内試験を行って決定するものとする。	
設計及び施工計画を決定する際に必要な地盤条件は、支持層の深さ、軟弱層の厚さなどの 地盤の成層状態、締まり具合、せん断特性、変形特性、圧密特性、透水性及び地下水位(残留 水位)などである。	
地盤は圧密現象などによる時間の経過や上載圧の変化によってその特性が大きく変わる。 このため、資料調査から待られた過去の地盤の情報を用いる場合には、上載圧や圧密度の変 化によって地盤条件が変わっていないことを確認することが大切である。	
地盤の考え方については 「海岸保全施設の技術上の基準・同解設 (2018)」(p. 2-115~)か 「2.8 地盤」を参照のこととする。	新)出典名、参
2-9 土圧及び水圧 照頁	
2-9-1 土 圧	
[処理基準] 設計に用いる土圧は、地盤の特性、構造物の特性、地震力等を考慮して適切な算定式によ り算定するものとする。	
土圧には、構造物と地盤の相対運動による主働土圧、受働土圧及び静止土圧がある。 また、地盤材料を大きく分類すると砂質土、粘性土に分けられる。また、常時と地震時を分 けて考慮する。土圧式が対象としている一時的な土以外の補強土・改良土等に対しては、別 途検討を要する。 土圧の質素とおけて「強速・強場の検認の設計を変化した。	
章 土圧及び水圧」を参照するものとする。	新)出典名、参
	設計に用いる地盤条件は、原則として地盤調査及び室内試験を行って決定するものとする。 設計及び施工計画を決定する際に必要な地盤条件は、支持層の深さ、軟弱層の厚さなどの 地盤の成層状態、締まり具合、せん断特性、変形特性、圧密特性、透水性及び地下水位(残留 水位)などである。 地盤は圧密現象などによる時間の経過や上載圧の変化によってその特性が大きく変わる。 このため、資料調査から得られた過去の地盤の情報を用いる場合には、上級上や圧密度の変化によって地盤条件が変わっていないことを確認することが大切である。 地盤の考え方については、「海岸保全施設の技術上の基準・同解説 (2018)」(p.2-115~)か 「2.8 地盤」を参照のこととする。 2-9 土圧及び水圧 2-9-1 土 圧 「処理基準」 設計に用いる土圧は、地盤の特性、構造物の特性、地震力等を考慮して適切な算定式により算定するものとする。 土圧には、構造物と地盤の相対運動による主働土圧、受働土圧及び静止土圧がある。 また、地盤材料を大きく分類すると砂質土、粘性土に分けられる。また、常時と地震時を分けて考慮する。土圧式が対象としている一時的な土以外の補強土・改良士等に対しては、別途検討を要する。 土圧の算定方法は、「流港・流場の施設の設計参考図書 2023 年版」p.155 以降の「第10

図 4-3.3 本調査での更新箇所例(第2章 2-7_海浜形状~2-9_土圧及び水圧)

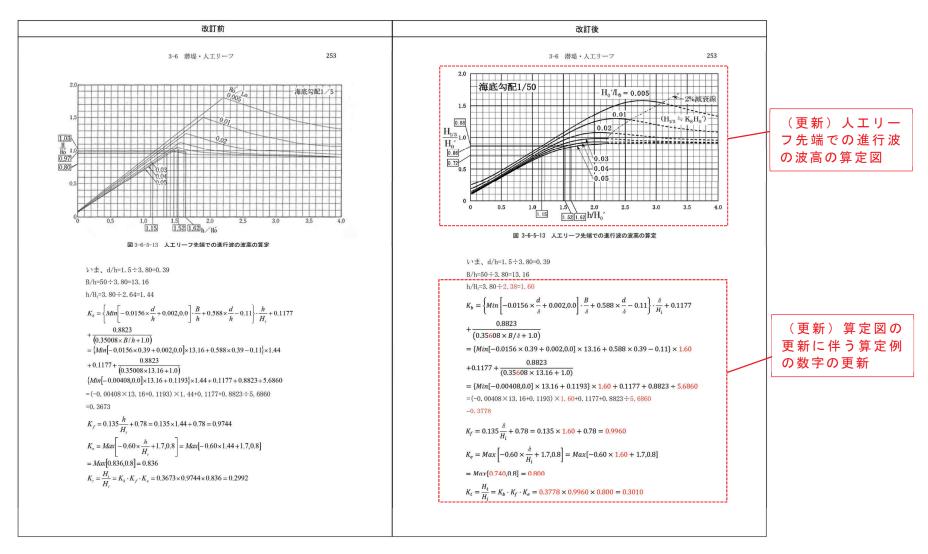


図 4-3.4 本調査での更新箇所例 (第3章 3-6_潜堤・人工リーフ)

改訂前	改訂後	
3-10 附帯施設等 313	3-10 附帶施設等 313	
ル鋳鉄等の構造とする場合もある。	ル銭鉄等の構造とする場合もある。	
②ゲート(扉体)の構造	②ゲート (扉体) の構造	
ゲートは、鋼構造又はこれと同等以上の性能を有する構造とし、十分な水密性をもた	ゲートは、鋼構造又はこれと同等以上の性能を有する構造とし、十分な水密性をもた	
せ開閉が確実にできるものとする。	せ開閉が確実にできるものとする。	
水門、樋門で使用されているゲート型式を大別すると、ローラ型式(ローラゲート、	水門、樋門で使用されているゲート型式を大別すると、ローラ型式(ローラゲート、	
シェル構造ローラゲート)、ヒンジ形式(セクターゲート、起伏ゲート、マイターゲート、	シェル構造ローラゲート)、ヒンジ形式(セクターゲート、起伏ゲート、マイターゲート、	
スイングゲート、フラップゲート、バイザゲート)、スライド型式(スライドゲート)、	スイングゲート、フラップゲート、パイザゲート)、スライド型式(スライドゲート)、	
その他の型式がある。このうち、防潮樋門ではローラ型式のものが多い。ゲート自体は	その他の型式がある。このうち、防潮樋門ではローラ型式のものが多い。ゲート自体は	
鋼構造とする場合が多いがアルミニウム製や FRP 製のものもある。	鋼構造とする場合が多いがアルミニウム製や FRP 製のものもある。	
③ゲートの設計	③ゲートの設計	
ゲートの設計にあたっては、「海岸保全施設の技術上の基準・同解説」のほかに次の手	ゲートの設計にあたっては、「海岸保全施設の技術上の基準・同解説」のほかに次の手	
引書等を参考としてよい。	引書等を参考としてよい。	
・「アルミニウム合金製水門設計製作指針案」(社)軽金属協会	・「アルミニウム合金製水門設計・製作指針(案)」(社)日本アルミニウム協会	(更新)出典名、参
なお、ゲートに津波波力を作用させた状態を照査する場合、本書の「2-4-5 津波の波	なお、ゲートに津波波力を作用させた状態を照査する場合、本書の「2-4-5 津波の波	
力」で示した谷本式のほか、反射段波浪高の静水圧を設計波圧とする式(岩崎らの式)	力」で示した谷本式のほか、反射段波浪高の静木圧を設計波圧とする式(岩崎らの式)	照頁
などが使われている例が多い。これらの式は、津波の段波としての取り扱い方や、波圧	などが使われている例が多い。これらの式は、津波の段波としての取り扱い方や、波圧	
の静水圧への換算方法、直立壁へのせり上がりや反射、越流の考慮の仕方などに違いが	の静水圧への換算方法、直立壁へのせり上がりや反射、越流の考慮の仕方などに違いが	
あるもので、「水門工学」(2004年5月 技報堂出版)で詳しく解説されているので、参	あるもので、「木門工学」(2004年5月 技報堂出版)で詳しく解説されているので、参	
考にするとよい。	考にするとよい。	
ゲートの管理	④ゲートの管理	
ゲートは必要時に、確実に開閉ができるよう十分な管理を行う。特にフラップ及びマ	ゲートは必要時に、確実に開閉ができるよう十分な管理を行う。特にフラップ及びマ	
イターゲートは、わずかな夾雑物等によって不完全閉塞や開閉不能を起こしやすいので、	イターゲートは、わずかな夾雑物等によって不完全閉塞や開閉不能を起こしやすいので、	
注意を要する。	注意を要する。	
本体及びゲートの設計についての詳細については、「海岸保全施設の技術上の基準・同解	本体及びゲートの設計についての詳細については、「海岸保全施設の技術上の基準・同解	
」 (p. 3-135~)の「3.11.2 水門及び樋門 3.11.2.6 安全性能の照査 (3)本体及びゲ	説 (2018)」(p. 3-153~)の「3. 11. 2 水門及び樋門 3. 11. 2. 6 安全性能の照査 (3) 本体	(更新)出典名、参
トの構造」を参照のこととする。	及びゲートの構造」を参照のこととする。	一 (更初/田英石、多
TOMWER LINE ON THE	O) To Miller I I would be	照頁
)河口処理工としての検討	3) 河口処理工としての検討	
河口処理工としての水門、樋門等は、波浪による局所(前面)洗掘を利用して河口部の堆	河口処理工としての水門、樋門等は、波浪による局所(前面)洗掘を利用して河口部の堆	
責士砂をフラッシュすることを目的にしたものであり、河川流、波浪に対する基礎部の処 B. L. D. C. Market A. M. William R. C. L. D. C. Market A. M. W. M. M. C. M.	積土砂をフラッシュすることを目的にしたものであり、河川流、波浪に対する基礎部の処 理を十分に検討する必要がある。	
里を十分に検討する必要がある。	理で丁刀に使削する必要かめる。	
(7) 7.0.16.0.48441-188+ 7.03金市VA	(7) その他の機能に関する留意事項	
(7) その他の機能に関する留意事項		

図 4-3.5 本調査での更新箇所例(第3章 3-10_附帯施設等)

改訂前	改訂後]
332 第3章 漁港海岸保全施設の設計 設である。 釧路港では、全国初となる津波漂流物対策施設が整備されており、構造的な特徴としては、 剛構造であるコンクリート製の堤防等とは異なり、漂流物の衝突エネルギーを支柱などの部 材変形によって吸収させる柔構造としている。 なお、津波漂流物対策施設の設計の詳細については、「津波漂流物対策施設設計ガイドラ イン (案)」((財)沿岸技術研究センター、(社) 寒地港湾技術研究センター)を参考と してよい	332 第3章 漁港海岸保全施設の設計 設である。 釧路港では、全国初となる津波漂流物対策施設が整備されており、構造的な特徴としては、 剛構造であるコンクリート製の場防等とは異なり、漂流物の衝突エネルギーを支柱などの部 材変形によって吸収させる素情送としている。 なお、建設漂流物対策施設の設計の詳細については、「建設漂流物対策施設設計ガイドラー イン」((財)治岸技術研究センター、(社)集単港湾技術研究センター)及び「漁港の津 波漂流物対策施設設計ガイドライン(案)」(水産庁)を参考としてよい。	(追加)関連する 参考文献
	3-10-11 気検変動適応策における設計上の工夫 気候変動適広策の設計を行う際、経済性や施工性等を比較して優位な場合、以下のような設計を施士ことができる。また、本手引以外の基準・マニュアル等を参照する工種については、それらに記載された気候変動適応策の考え方を用いることができる。 ・ 順応型対策を選択する場合、段階的な性能向上が容易な構造とすること (木門、陸間等) 天端高やゲート等の高上げを想定した基礎、本体の会裕の確保等 (排水機場) 排水能力の向上を想定したボンブ設置場所の余裕の確保等 ・ 施設の大型化に件う操作性への影響の緩和策を講じること (陸間、極門等) 樋門、陸間の電動化等 (陸間) アクセス路の整備による陸間の秘究合等 ・ 海面上昇による船舶の航行争を影響の緩和策を講じること (木門) 水門等における海面上昇を考慮した可航高の確保 ・ 他事業と連携した適応策を講じること (木門、排水機場等) 河川堤防の嵩上げと連携した水門の整備等	(更新なし)令和5年度事業での加筆事項

図 4-3.6 本調査での更新箇所例(第3章 3-10_附帯施設等)