マリンIT

公立はこだて未来大学 マリンIT・ラボ 和 田 雅 昭

マリンIT (2004年~)

うみのアメダス(海水温観測ネットワーク)

全国の沿岸を対象とした海水温観測ブイを開発

漁業者が抱える課題

地球温暖化に起因する海水温の上昇により、漁業では漁場形成が変化し、養殖業では斃死が発生し、定置網漁業では魚種が変化し、環境への順応に迫られていた。

海洋環境の可視化

- 海水温観測ブイの導入
- 多点多層観測の実施
- リアルタイム配信

ICT利活用の効果

- 海水温の状態が数値とグラフで可視化された
- 勘と経験の強化(補正と検証)が図られた
- 効率的、かつ、計画的な生産が可能となった

社会実装の方法 ブイメーカーによる製品化

うみのレントゲン(水産資源管理システム)

北海道のマナマコを対象とした資源評価手法を開発

漁業者が抱える課題

中国市場の開拓に成功した北海道産のマナマコは価格が急騰し、漁業者の漁獲意欲が向上したことから<mark>乱獲状態</mark>となり、 資源量が減少、枯渇の危機に面していた。

水産資源の可視化

- iPadの導入
- 漁獲情報の共有
- 位置情報の共有

	EST DIGITAL	DATY-WELKS	order .	SHA	2011/09/27 13:38:39	
	HM	MH	mile	318	at	
	08:01	09:10	01:09	2.2	BLRRICTEACT!	
	09:25	10:33	01:08	2.5	#600C#1+#F	
i	10.52	11:41	00:49	2.0	RORPPRO	
	11:56	12:54	00:58	1.2	n _X	
	13:06	-9-				
	-0-	-0-	-1-			
		-	100			
ï	m(m)	m)m	-0-			

ICT利活用の効果

- 資源の状態がマップとグラフで可視化された
- 漁業者主体の資源管理が実現した
- 効率的な技術継承(後継者育成)が可能となった

社会実装の方法 ITベンダによるサービス化

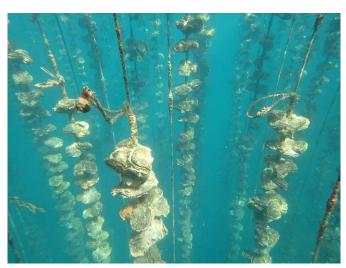
お品書き

- ●講義コース
 - ✓ 資源の見える化(IoT)
 - ✓課題の見える化(UCD)
 - ✓明日の見える化(AI)など
- ●実習コース
 - ✓ユビキタスブイ
 - ✓マイクロキューブ
 - **✓** AIS
 - ✓マリンプロッタなど

資源の見える化

- ●活用する道具・技術
 - ✓デジタル操業日誌
 - ✓マイクロキューブ
- ●期待される効果
 - ✓合意形成など
- ▶講義內容(事例紹介)
 - ✓まなまこの資源管理など




•••∘ SoftBank ♥ 〈 〉 ∭					5:31 1.94.198		c <u>†</u> + <u>†</u>
	診断項目	H27	H26	H25	単位	推奨	意味
	CPUE	32.88	40.57	24.61	kg・曳 網 ⁻¹ ・日 ⁻¹		1曳網あたり漁獲量の平均値。
	初期密度(重量)	5.1	6.2	5.6	g/m ²		漁期初めのマナマコの分布密度(重量)の 平均値。
	初期密度(個体数)				個 体/m ²	l	漁期初めのマナマコの分布密度 (個体数) の平均値。
	初期資源量	76.95	83.5	93.27	トン	134 以上	漁期初めのマナマコ資源量。
	初期資源個体数				個体		漁期初めのマナマコ資源量(個体数)。
漁獲規制	資源水準指数	57	62	70	-		資源水準の指標。60未満で低,60~140で 中,140以上で高。
上の	延べ漁獲量 (調査海域のみ)	9.55	29.19	35.38	トン		上記調査対象海域の漁獲量。
	延べ漁獲個体数 (調査海域のみ)				個体		マナマコ漁獲個体数。
	漁獲率	12.39	34.95	37.93	%		初期資源量に対する漁獲量の割合。
	昨年からの増加量	22.6	29.15	45.62	トン		初期資源量と前年の獲り残し資源量の差。

課題の見える化

- ●活用する道具・技術
 - ✓スケッチブック
 - ✓デジタル操業日誌
- 期待される効果
 ✓ ワークフローの見直しなど
- ▶講義内容(事例紹介)
 ✓いわがきの生産管理など

明日の見える化

- ●活用する道具・技術
 - ✓ユビキタス魚探
 - ✓人工知能(AI)
- ●期待される効果
 - ✓流通改革など
- >講義内容(事例紹介)
 - ✓定置網の魚種判別など

ユビキタスブイ

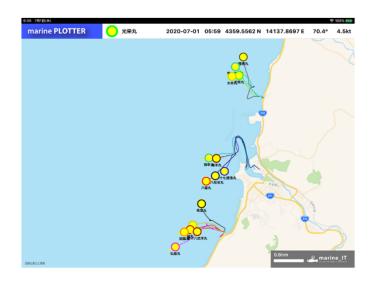
- ユビキタスブイとは✓小型の海洋観測ブイ
- ●主な役割
 - ✓定点定時観測
- ▶実習内容
 - ✓ユビキタスブイの製作
 - ✓ユビキタスブイの設置など

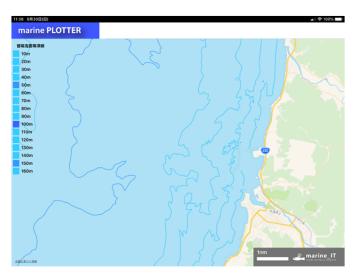
マイクロキューブ

- ●マイクロキューブとは? ✓3G/4Gを用いたVMS
- 主な役割✓ 船舶のモニタリング

- ▶実習内容
 - ✓GPSプロッタとの接続
 - ✓マリンプロッタでの表示など

AIS


- AISとは? ✓ VHFを用いたVMS
- 主な役割✓船舶のモニタリング
- ▶実習内容
 - ✓AIS受信局の仮設
 - ✓信号の受信と解読など



マリンプロッタ

- ●マリンプロッタとは?
 - ✓位置共有のアプリ
- ●主な役割
 - ✔僚船の位置確認など
- ▶実習内容
 - ✓船舶の位置表示
 - ✓等深線の描画など

YouTube

IT漁業による地方創生 (Innovation Nippon)

IT漁業による地方創生 (総務省)

マリンITプロジェクト (公立はこだて未来大学)

ムダを省いて稼ぐ! 1 次産業 (テレビ北海道)

