令和4年度 アカガレイ日本海系群 資源評価

水産資源研究所 水産資源研究センター 底魚資源部 底魚第3グループ

参画都道府県 (地理順)

青森県産業技術センター水産総合研究所 秋田県水産振興センター 山形県水産研究所 新潟県水産海洋研究所 富山県農林水産総合技術センター水産研究所

石川県水産総合センター

福井県水産試験場

京都府農林水産技術センター海洋センター

兵庫県立農林水産技術総合センター但馬水産技術センター

鳥取県水産試験場

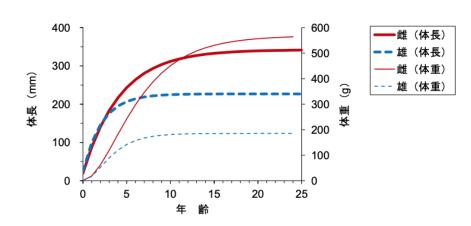
島根県水産技術センター

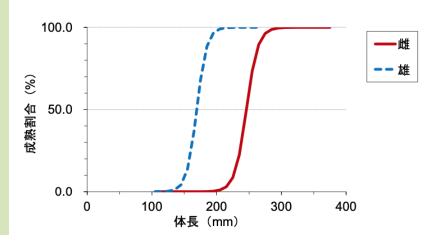
生物学的特性

■寿命: 雌20歳、雄15歳

■成熟開始年齢:

雌5歳(50%)、10歳(100%) 雄3歳(50%)、10歳(100%)


雌が大型化


■産卵期・産卵場: 2~4月、若狭湾内、経ヶ岬周辺および赤碕沖を中心とする隠岐諸島周辺の海域

■食性:

浮遊期は小型プランクトン 着底後は周年クモヒトデ類、季節的 にマイクロネクトン

■捕食者:大型のマダラは小型のアカガレイを捕食する

・ほぼ周年漁獲されるが、特に冬期に多く漁獲される

これまでの会議の流れ

R4新ルール移行アカガレイ

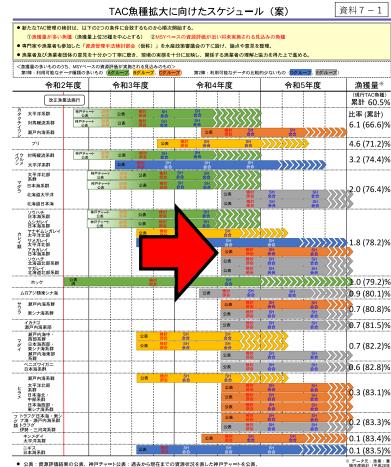
・202208: 担当者会議

(研究機関会議向け議論)

・202209: 資源評価会議

(従来はABC算定)

・202210: 研究機関会議


(再生産関係と管理基準値の提案)

・202301: 日本海資源評価説明会

(今年初)

· 2023??: 管理手法検討会

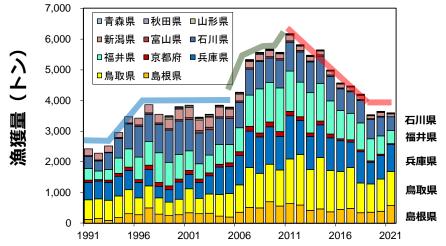
· 2023??: SH会議

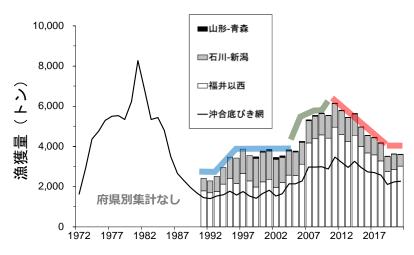
 [◆] 公表: 淺海評価結果の公表: 神戸チャート公表: 過去から現在までの資源状況を表した神戸チャートを公表: 検討部会: 資源管理手法検討部会、SH会合: 資源管理方針に関する検討会(ステークホルダー会合)、説明会等: 必要に応じ、説明会等を実施 ~平成32年中的(検針側を、SH会合、説明会等の関係スケジュールはイメージ、必要に応じ、複数回解化する。)

⁽機的形式、3円式台、配明式号の開催スプラユールは1)資源評価結果は毎年更新される。

資源評価の進捗状況によって、上記のスケジュールは時期が前後する場合がある。
◆ 会和5年度までに、漁獲量ベースで8割をTAC管理とする。

 ^{▼ 〒}和15年度までは、湖接重へ一人で8割を1AC管理とする。
(遠洋漁業で漁獲される魚類、国際的な枠組みで管理される魚類(かつお・まぐろ・かじき類)、さけ・ます類、貝類、藻類、うに類、海産ほ乳類は除く。)


漁獲量の推移


府県別全漁業種類集計(1991年以降)

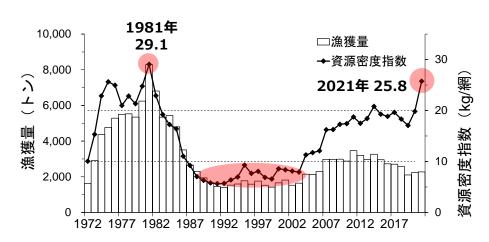
- ・1991年~ 横ばい・緩やかな増加
- ・2005年前後に顕著な増加、2008年以降は5,500トン前後
- ・2011年以降は減少傾向、2021年は3,616トン

(2020年は3,625トン)

石川県・福井県・兵庫県・鳥取県の漁獲量が多い

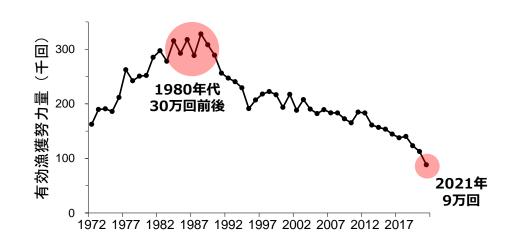
沖底が全体の4~6割、日本海西部の漁獲が主体

沖底の漁獲成績報告書の集計値



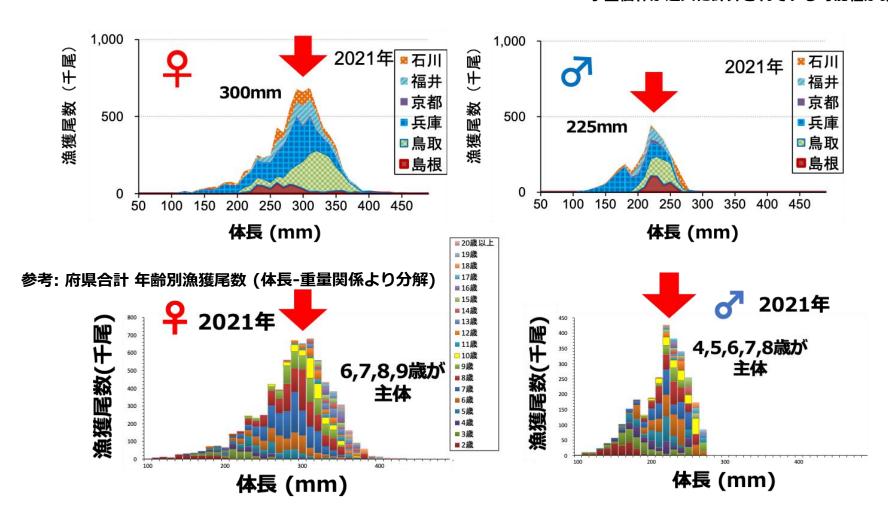
(1そうびき)

・資源密度指数


1990年代は10を下回る程度に低く、 2007年以降は15以上を維持

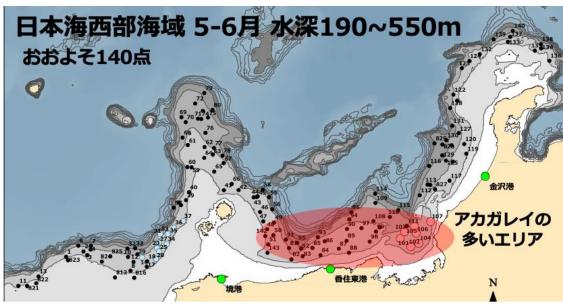
2021年 25.8

・有効漁獲努力量1980年代に30万回前後以後、緩やかに減少し続け


2021年 9万回

漁獲物 体長組成 (府県別)

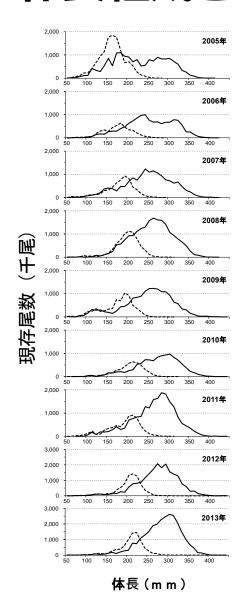
兵庫県では銘柄 - 体長keyの更新が不十分で 小型個体が過大に計算されている可能性がある。

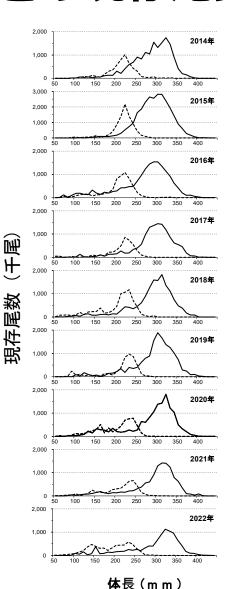

2021年は、雌300mm前後、雄225mm前後がピーク

日本海ズワイガニ等底魚資源調査

資源 評価会議

(以後、トロール調査)

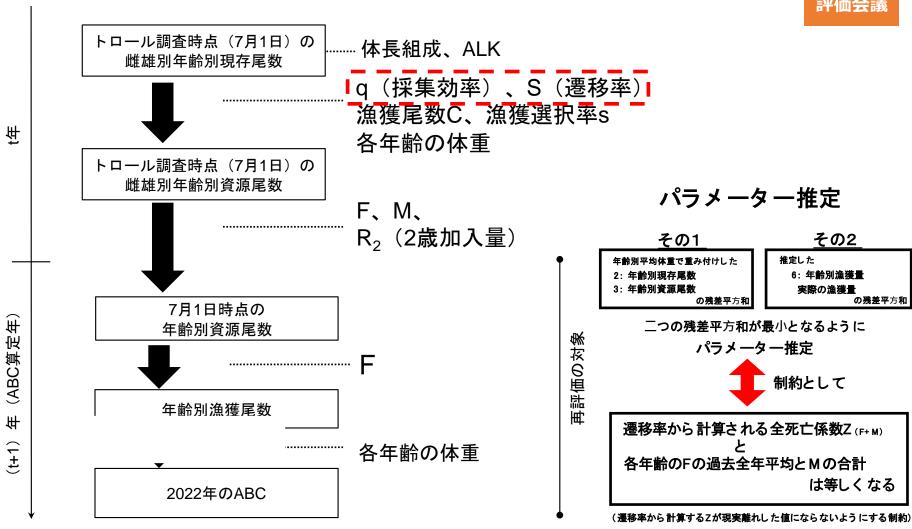




体長組成ごとの現存尾数

メス (実線)

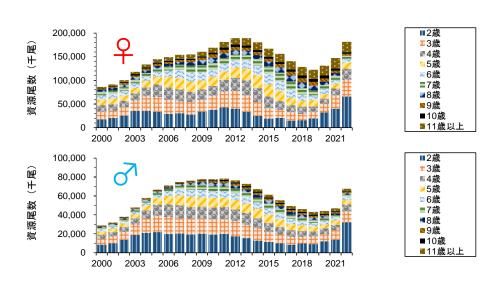
- ・2013年以降は 体長300mm以上にモード
- ・250mm前後の現存尾数が減少、 大型個体に偏る


オス (破線)

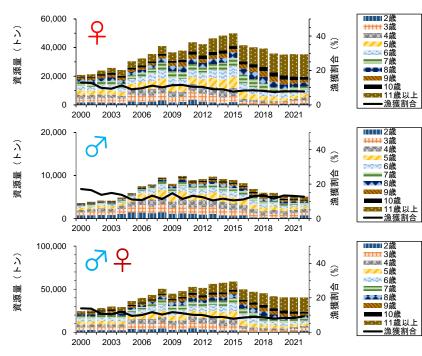
- ・2013年以降は 体長220mm前後にモード
- ・メスと同様に大型個体に偏る 2010年以降、 ピークは変わらずも 現存尾数は減少傾向。 2022年は特に雌で小型の個体が多い

調査船データに基づくコホート解析の流れ

2000 ~ 2022年データを使用 (23年分)


資源 評価会議

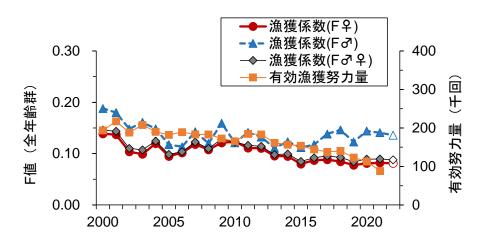
コホート解析結果 (資源尾数と資源量)


資源尾数

雌雄ともに2~7歳が多い (特に2,3歳が多い) 近年では11+歳以上の多い(特に雌)

近年減少傾向だったが、2歳が増加している

資源量

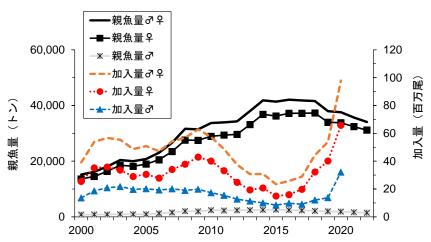

11+歳の割合が多く(特に雌)、 2022年は40,428トン

漁獲割合は低く、8%

コホート解析結果 (Fと親魚量等)

漁獲係数 および 有効漁獲努力量

漁獲係数


- ・雌:2000年は0.14、2021年で0.08
- ・雄:2000年は0.19、2021年で0.14

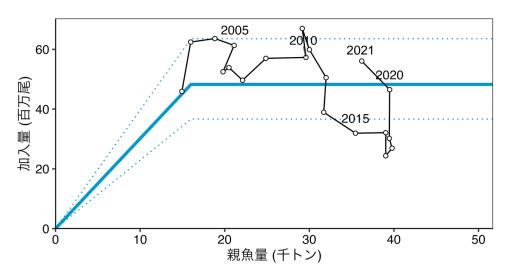
有効漁獲努力量

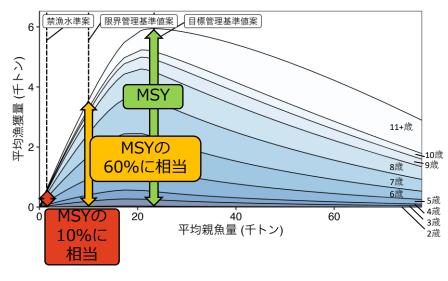
・2001年が22万回、2021年で9万回

漁獲係数・有効漁獲努力量ともに 減少の傾向

親魚量 および 加入量

親魚量 (年齢別資源量に年齢別成熟率をかけたもの)


- ・雌: 1.3万トン〜4.1万トンで推移、 2022年は31,152トン
- ・雄: 1,600トン〜5,100トンで推移、 2022年は2,925トン

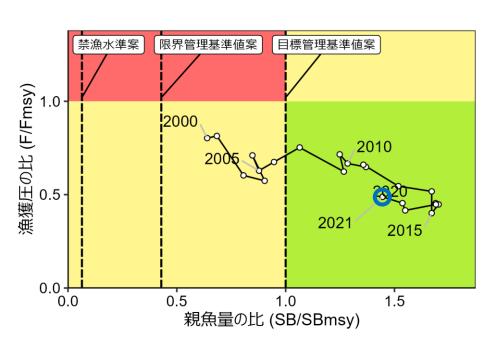

加入量

・雌雄ともに、2009年から減少 雌: 2016年以降、雄: 2018年以降は増加、 近年最高レベル

親魚量は横ばいか減少傾向、 加入量は増加

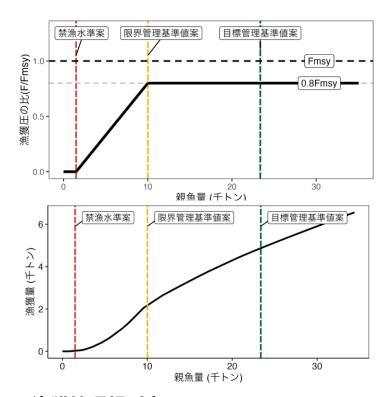
再生産関係と各管理基準値

・再生産関係


2000~2019年の親魚量と翌々年(2002~2021年)の2歳魚の加入量に対し、加入量の変動傾向(再生産関係から予測されるよりも良い加入(悪い加入)が一定期間続く効果)を考慮したホッケー・スティック型再生産関係(青太線)を適用した。青点線は観察データの90%が含まれると推定される範囲である。図中の数字は2歳魚が加入した年を示す。

・管理基準値案と禁漁水準案

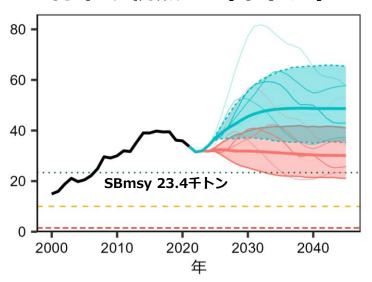
最大持続生産量(MSY)を実現する親魚量(SBmsy)は23.4千トンと算定される。目標管理基準値としてはSBmsy、限界管理基準値としてはMSYの60%の漁獲量が得られる親魚量、禁漁水準としてはMSYの10%の漁獲量が得られる親魚量を提案する。


目標管理基準値案	限界管理基準値案	禁漁水準案	2021年の親魚量	MSY	2021年の漁獲量
23.4千トン	10.0千トン	1.5千トン	33.8千トン	5.9千トン	3.6千トン

神戸プロットと漁獲管理規則案

・神戸プロット(神戸チャート)

漁獲圧(F)は、最大持続生産量(MSY)を実現する 漁獲圧(Fmsy)を全ての年で下回っている。親魚量 (SB)は、最大持続生産量を実現する親魚量 (SBmsy)を2007年以降上回っている。

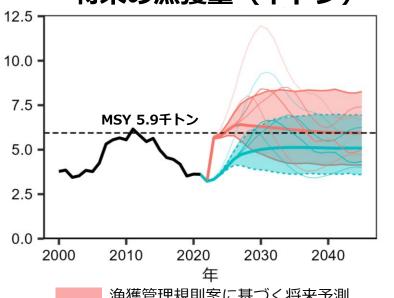

・漁獲管理規則案

(上図:縦軸は漁獲圧、下図:縦軸は漁獲量)

Fmsyに乗じる調整係数であるβを0.8とした場合の漁獲管理規則案を黒い太線で示す。下図の漁獲量については、平均的な年齢組成の場合の漁獲量を示した。

将来予測の結果 ①

将来の親魚量(千トン)



・漁獲管理規則案の下での親魚量と漁獲量の将 来予測(現状の漁獲圧は参考)

βを0.8とした場合の漁獲管理規則案に基づく将来予測結果を示す。

0.8Fmsyでの漁獲を継続した場合、平均値としては親魚量はSBmsyを上回り、漁獲量はMSYをやや上回る水準で推移する。

将来の漁獲量(千トン)

漁獲管理規則案に基づく将来予測 (β=0.8の場合)

現状の漁獲圧に基づく将来予測

実線は予測結果の平均値を、網掛けは予測結果 (1万回のシミュレーションを試行)の90% が含まれる範囲を示す。

---- MSY

------- 目標管理基準値案

----- 限界管理基準値案

____ 禁漁水準案

将来予測の結果 ②

・将来の平均親魚量(千トン)

2033年に親魚量が目標管理基準値案(23.4千トン)を上回る確率

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	
1.0	33.8	31.5	32.0	30.6	30.1	29.2	28.2	27.3	26.8	26.4	26.0	25.7	25.4	64%
0.9	33.8	31.5	32.0	31.2	31.2	30.8	30.1	29.5	29.2	29.0	28.7	28.5	28.2	83%
0.8	33.8	31.5	32.0	31.8	32.4	32.5	32.2	31.9	31.9	31.9	31.8	31.6	31.5	94%
0.7	33.8	31.5	32.0	32.5	33.6	34.2	34.5	34.6	34.9	35.2	35.3	35.3	35.3	99%
現状の漁獲圧	33.8	31.5	32.0	34.1	36.9	39.2	41.0	42.5	44.1	45.5	46.6	47.4	47.9	100%

・将来の平均漁獲量(千トン)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
1.0	3.6	3.2	6.9	6.8	6.9	7.0	6.9	6.8	6.7	6.6	6.5	6.4	6.4
0.9	3.6	3.2	6.3	6.3	6.5	6.7	6.7	6.6	6.5	6.5	6.4	6.4	6.3
0.8	3.6	3.2	5.7	5.8	6.1	6.3	6.4	6.4	6.3	6.3	6.3	6.2	6.2
0.7	3.6	3.2	5.0	5.2	5.6	5.9	6.0	6.0	6.1	6.1	6.0	6.0	6.0
現状の漁獲圧	3.6	3.2	3.3	3.6	4.1	4.5	4.7	4.8	4.9	5.0	5.1	5.1	5.1

漁獲管理規則案に基づく将来予測において、 β を0.7~1.0の範囲で変更した場合と現状の漁獲圧(2019~2021年の平均: β =0.45)の場合の平均親魚量と平均漁獲量の推移を示す。2022年の漁獲量は、予測される資源量と現状の漁獲圧により仮定し、2023年から漁獲管理規則案に基づく漁獲を開始する。 β =0.8とした場合、2023年の平均漁獲量は5.7千トン、2033年に親魚量が目標管理基準値案を上回る確率は94%と予測される。

※ 表の値は今後の資源評価により更新される。